The Periodic Table of the Elements

_																				
2	He	Helium 4 003	10	Ne	Neon 20,1797	18	Ar	Argon 39 948	36	Kr	Krypton 83.80	54	Xe	Xenon 131.29	98	Rn	(222)			
			6	Ţ	Fluorine 18.9984032	17	C	Chlorine 35,4527	35	Br	Bromine 79,904	53	Ι	lodine 126.90447	85	At	Astatine (210)			
			8	0	Oxygen 5_9994	16	S	Sulfur 32,066	34	Se	Selenium 78,96	52	Te	Tellurium 127,60	84	P_0	Polonium (209)			
			7	Z	Nitrogen 14,00674	15	d .	Phosphorus 30.973761	33	As	Arsenic 74,92160	51	Sb	Antimony 121,760	83	Bi	Bismuth 208,98038			
			9	C	Carbon 12,0107	14	Si	Silicon 28.0855	32	Ge	Germanium 72,61	50	Sn	Tin 118,710	82	Pb	Lead 207.2	114		
			5	В	Boron 10.811	13	Al	Aluminum 26_981538	31	Ga	Gallium 69 723	49	In	Indium 114.818	81	I	Thallium 204,3833	113		
		,							30	Zn	Zinc 65.39	48	Cd	Cadmium 112,411	80	Hg	Mercury 200_59	112		(277)
									29	Cu	Copper 63,546	47	Ag	Silver 107,8682	79	Au	Gold 196.96655	1111	Q	(272)
									28	Z	Nickel 58,6934	46	Pd	Palladium 106,42	78	Pt	Platinum 195.078	110		(569)
									27	Co	Cobalt 58.933200	45	Rh	Rhodium 102.90550	77	Ir	192.217	109	Mt	Meitnerium (266)
									26	Кe	lron 55.845	44	Ru	Ruthenium 101,07	76	Os	Osmium 190,23	108	Hs	Hassium (265)
									25	Mn	Manganese 54_938049	43	Tc	Technetium (98)	75	Re	Rhenium 186,207	107	Bh	Bohrium (262)
														Malybdenum 95.94						Seaborgium (263)
									23	>	Vanadium 50.9415	41	Np	Niobium 92,90638	73	Та	Tantalum 180 9479	105	Db	Dubnium (262)
									22	Ξ	Trianium 47.867	40	Zr	Zirconium 91.224	72	Hf	Hafnium 178 49	104	Rf	Rutherfordium (261)
									21	Sc	Scandium 44,955910	39	X	Yttrium 88 90585	57	La	Lanthanum 138.9055	68	Ac	Actinium (227)
			4	Be	Beryllium 9 012182	12	Mg	Magnesium 24,3050	20	Ca	Calcium 40.078	38	Sr	Strontium 87,62	56	Ba	Barium 137.327	88	Ra	Radium (226)
-	Н	Hydrogen 1 00794	3	Ľ	Lithium 6.941	11	Na	Sodium 22 989770	19	X	Potassium 39 0983	37	Rb	Rubidium 85,4678	55	Cs	Cesium 132 90545	87	Fr	Francium (223)

58	59	09	61	- 62	63	64	65	99	67	89	69	70	71
Ce	Pr	PZ	Pm	Sm	Eu	Сd	Tb	Dy	Ho	Er	Tm	ΛP	Lu
Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutelium
140,116	140.90765	144 24	(145)	150.36	151.964	157.25	158.92534	162.50	164.93032	167.26	168,93421	173.04	174,967
96	91	92	93	94	95	96	6	86	66	100	101	102	103
Th	Pa	n	dN	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	S _o	Lr
Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
232.0381	231.03588	238.0289	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

1995 IUPAC masses and Approved Names from http://www.chein.gmw.ac.uk/iupac/AtWu/ masses for 107-111 from C&EN, March 13, 1995, p. 35 112 from http://www.gsi.de/z112e.html

Compounds Containing the Following lons Are Generally Soluble	Exceptions
$^{+}$, Na $^{+}$, K $^{+}$, and NH $_{4}$	None
NO_3 and $C_2H_3O_2^-$	None
CI ⁻ , Br ⁻ , and I ⁻	When these ions pair with ${\rm Ag^+,Hg_2^{2^+},orPb^{2^+},}$ the resulting compounds are insoluble.
SO ₄ ²⁻	When SO ₄ ²⁻ pairs with Sr ²⁺ , Ba ²⁺ , Pb ²⁺ , Ag ⁺ , or Ca ²⁺ , the resulting compound is insoluble.
Compounds Containing the Following ons Are Generally Insoluble	Exceptions
OH ⁻ and S ²⁻	When these ions pair with Li^+ , Na^+ , K^+ , or NH_4^+ the resulting compounds are soluble.
	When S^{2-} pairs with Ca^{2+} , Sr^{2+} , or Ba^{2+} , the resulting compound is soluble.
	When OH ⁻ pairs with Ca ²⁺ , Sr ²⁺ , or Ba ²⁺ , the resulting compound is slightly soluble.
0 ₃ ² - and PO ₄ ³ -	When these ions pair with Li ⁺ , Na ⁺ , K ⁺ , or NH ₄ ⁺ , the resulting compounds are soluble.

PV=nRT

R=.08206 L.atm

q=mCAT

K=2+273

F2018/CHEM1450/Exam 4

December 6, 2018

Multiple Choice: Write the letter that corresponds to the correct answer in the blank provided to the left of each problem. (3 Points Each)

According to the following Complete Ionic Equation, list the spectator ion(s).

$$2 \text{ Na}^{+}(\text{aq}) + \text{CO}_3^{2-}(\text{aq}) + \text{Cu}^{2+}(\text{aq}) + 2\text{Cl}^{-}(\text{aq}) \rightarrow \text{CuCO}_3(\text{s}) + 2\text{Na}^{+}(\text{aq}) + 2\text{ Cl}^{-}(\text{aq})$$

- a. Na⁺ and Cl⁻
- b. Na⁺ and CO₃²⁻
- c. Cl-only
- d. Cu2+ and CO32-
- e. none of the above

Which of the following is NOT a strong electrolyte?

- LiOH

These should all be subscripted!

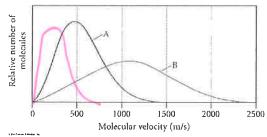
CaClz

MgCO3

VaCzH3O2

- MgCO3
- d. NaC2H3O2
- e. Li2SO4

Li2504


What precipitate is most likely formed from a solution containing Ba⁺², Na⁺¹, OH⁻¹, and CO3-2.

- NaOH a.
- b. BaCO₃
- c. Na₂CO₃
- d. Ba(OH)₂
- There will not be a precipitate formed.

When the number of moles of gas present and the volume of the container remain constant, what happens to the pressure of a gas sample when the temperature is decreased?

- The pressure increases.
- The pressure decreases.
- c. The pressure stays the same.
- d. It depends on the gas inside the sample
- e. none of the above

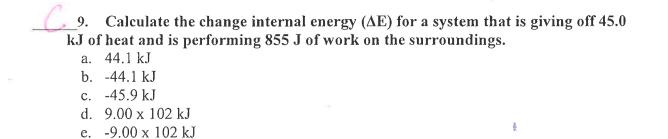
5. The graph shows the distribution of molecular velocities for two different molecules (A and B) at the same temperature. A third molecule, Molecule C, has a larger molar mass than A and B. Describe the position of the peak of the velocity distribution of Molecule C at this same temperature.

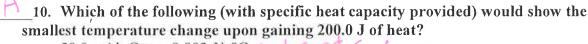
- a. The peak will be to the left of Molecule A.
- b. The peak will be between that of Molecules A and B.
- c. The peak will be to the right of Molecule B.
- d. The peak is so far to the right of Molecule B, it can't be placed on the graph
- e. You cannot determine this from the graph.

6. A container has an initial volume of 2.75L which is filled with air at 1.05 atm. Without changing the temperature or amount of gas in the container, how would you increase the pressure to 1.85atm?

- a. Decrease the volume of the container to 1.56L
- b. Decrease the volume of the container to 0.706L
- c. Increase the volume of the container to 4.85L
- d. Increase the volume of the container to 5.34L
- e. none of the above

P1 1 = P2 V2


7. Which of the following processes is endothermic?


- a. the boiling of water
- b. water freezing into ice
- c. a neutralization reaction that warms the surroundings
- d. melted chocolate hardening in a mold
- e. more than one of the above

8. If a chemical reaction has a μ_{rxn} = +462kJ, what do you know about the reaction?

Heat in

- a. overall, the bonds of the products are more stable than the reactants
- **b.** overall, the bonds of the products are less stable than the reactants
- c. there are more bonds broken than made
- d. no bonds were broken, only bonds were formed in the reaction
- e. none of the above

b.
$$50.0 \text{ g Cu}$$
, $C_{\text{Cu}} = 0.385 \text{ J/g}^{\circ}\text{C}$

c. 25.0 g granite,
$$C_{granite} = 0.79 \text{ J/g}^{\circ}\text{C}$$

d.
$$25.0 \text{ g Au}$$
, $C_{Au} = 0.128 \text{ J/g}^{\circ}\text{C}$

e. 25.0 g Ag,
$$C_{Ag} = 0.235 \text{ J/g}^{\circ}\text{C}$$

- 11. Calculate the amount of heat (in kJ) required to raise the temperature of a 79.0 g sample of ethanol from 298.0 K to 385.0 K. The specific heat capacity of ethanol is 2.42 J/g°C.
 - a. 57.0 kJ

9=79.0g.2.42.87K

12. Choose the reaction that illustrates ΔH^of for NaHCO3.

a.
$$Na(s) + H_2(g) + C(s) + O_2(g) \rightarrow NaHCO_3(s)$$

b.
$$Na^+(aq) + HCO_3 - 1 (aq) \rightarrow NaHCO_3 (s)$$

c.
$$Na^+(aq) + H2O(1) + CO_2(g) \rightarrow NaHCO_3(s)$$

d.
$$Na(s) + 1/2 H_2(g) + C(s) + 3/2 O_2(g) \rightarrow NaHCO_3(s)$$

e.
$$Na(s) + 2 H(g) + C(s) + 3 O(g) \rightarrow NaHCO_3 (s)$$

Short Answer/Problems: Show your work where needed. If no work or reasoning is given but is necessary, no credit will be given.

1. Write the balanced complete ionic equation with phases for the following balanced molecular equation:

$$2 H_1 NO_3(aq) + K_2 S(aq) \rightarrow H_2 S(g) + 2 KNO_3(aq)$$

Complete Ionic Equation: (8 Points) 4H+(ag)+2N03-(ag)+2K+(ag)+32-(ag) Because of H2S(g) + 2K+ (ag) + 2NO3(ag)
the type, I didn't coest.

- 2. Complete the reactions below. You DO NOT need to balance the equations. You DO need to include phases for each product!
 - a. (4 Points) aqueous calcium nitrate reacts with aqueous magnesium sulfate

Ca(NO3)2(aq) + MgSO4(aq) -> Mg(NO3)2(aq)

b. (4 Points) Mg (s) + O₂(g) - MgO(s) -3¹²/₁₄₃ MgO(ag)

(3) if lettury c. (4 Points) $NH_4Cl(aq) + KOH(aq) \rightarrow NH_4OH(aq) + KCl(aq)$ $\rightarrow NH_3(q) + H_2O(l) + KCl(aq)$

(8 Points) Use the reaction below to complete the following questions: 3.

$$2 \operatorname{ZnS}(s) + 3 \operatorname{O}_{2}(g) \rightarrow 2 \operatorname{ZnO}(s) + 2 \operatorname{SO}_{2}(g) + 2 \operatorname{Z}_{2}(g)$$

- What is the oxidation number for Zn in ZnS?
- What is the oxidation number for S in SO₂?
- Which element is oxidized?
- d. Which element is reduced?
- (10 Points) Sulfuric acid reacts with lithium sulfide according to the following balanced reaction:

$$H_2SO_4(aq) + Li_2S(aq) \rightarrow H_2S(g) + Li_2SO_4(aq)$$

What volume of 0.125M H₂SO₄ is needed to produce 58.5 mL of H₂S at 273K and 1.00atm?

NH25 = PV 1.00atm (0585L) using (2)
.08206 · 273 K 2 .002

002611mo 1 H2S

.002611molH2S (Imol H2SO4) (IL) = .0209L. H2SO4 H2SO4

5. (6 Points) A 21.8 g sample of ethanol (C2H5OH) is burned according to the following reaction. The molar mass of ethanol is 46.07 g/mol. How much heat is released from this reaction?

 $C_2H_5OH(1) + 3 O_2(g) \rightarrow 2 CO_2(g) + 3 H_2O(g)$

(4 Points) The heat generated from the reaction above is used to heat a water sample. How much water in grams would I be able to heat from 20°C to 50°C with that energy?

9=584.4kJ=5.84x10" J=m(4.18 /g. 2)(30°C)

m=4.66×103 qt

6. (8 Points) Given the following equations and ΔH° values, determine the heat of reaction (kJ) at 298 K for the reaction:

 $B_2H_6(g) + 6 Cl_2(g) \rightarrow 2 BCl_3(g) + 6 HCl(g)$

$$BCl_3(g) + 3 H_2O(1) \longrightarrow H_3BO_3(g) + 3 HCl(g)$$

 $B_2H_6(g) + 6 H_2O(1) \longrightarrow 2 H_3BO_3(s) + 6 H_2(g)$
 $1/2 H_2(g) + 1/2 Cl_2(g) \longrightarrow HCl(g)$

$$\Delta H^{\circ} = -112.5 \text{kJ}$$

 $\Delta H^{\circ} = -493.4 \text{kJ}$

$$\Delta H^{\circ} = -92.3 \text{kJ}$$

-268.4

2H3BOg + (oHCT -) 2BCl3+tot20

7. (8 Points) Use the information provided to determine ΔH°_{TXN} for the following reaction:

CH₄(g) + 4 Cl₂(g)
$$\rightarrow$$
 CCl₄(g) + 4 HCl(g) \triangle H°_{rxn} = ?
 \triangle H°_f (kJ/mol) Cb(s) \triangle Cl₂(g) \triangle H_g° = 0 \bowtie J/mol

CH₄(g) -75

-96 CCl4(g)

HCl(g) -92 SM°(P) - ZDH°(R)

" Just on the

E.