\qquad
F2014/ CHEM1301/Exam 4
11/7/14

Multiple Choice: (4 Points each) Write the letter associated with the correct answer in the space provided.

1. Using the following equation, how many moles of N_{2} are needed to form 2 moles of NH_{3} ?

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

a) 1 mol
b) 2 mol
c) 3 mol
d) 4 mol
e) None of the above
\qquad 2. What is the molar mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$?
a) $56.99 \mathrm{~g} / \mathrm{mol}$
b) $\quad 88.99 \mathrm{~g} / \mathrm{mol}$
c) $\quad 213.01 \mathrm{~g} / \mathrm{mol}$
d) $\quad 117.01 \mathrm{~g} / \mathrm{mol}$
e) None of the above
3. I need . $50 \mathrm{~mol} \mathrm{Na}_{3} \mathrm{PO}_{4}$ for a reaction. The molar mass of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ is $163.94 \mathrm{~g} / \mathrm{mol}$. How many grams should I use?
a) $\quad 327.88 \mathrm{~g}$
b) $\quad 81.97 \mathrm{~g}$
c) $\quad 163.94 \mathrm{~g}$
d) $\quad 41.00 \mathrm{~g}$
e) None of the above
4. A student dissolves 0.43 moles of NaCl in 200 mL water. What is the molarit of the solution?
a) .086 M
b) 0.63 M
c) .00215 M
d) 2.15 M
e) None of the Above
5. You need 0.4600 moles of HCl for a reaction. How many mL of .8500 M HCl do you need to measure out?
a) 541.2 mL
b) 54.12 mL
c) 391 mL
d) .391 mL
e) None of the Above
6. If the theoretical yield for a reaction is 5.00 g of product, but you only recover 4.00 g , what is the percent yield of the reaction?
a) 120%
b) 20%
c) $.80 \%$
d) 80%
e) None of the above
7. In a reaction, the reactant that runs out first is called the \qquad .
a) Excess reactant
b) Limiting reactant
c) Percent yield
d) Theoretical yield
e) None of the above
8. If you calculate that you will make 10.00 g of a product, but the reaction has a 72% yield, what can you expect to actually recover?
a) 13.9 g
b) 8.3 g
c) 7.20 g
d) 4.67 g
e) None of the above
9. If 50 mL of a 1.50 M solution of NaNO_{3} is diluted to a final volume of 150 mL , what is the molarity of the final solution?
a) .25 M
b) .5 M
c) .75 M
d) 3.0 M
e) None of the above
10. This is a free question... Happy 4 points!

Problems: Work the following problems. Show your work to get credit for the problems!

1. (10 Pts) How many mL of 12.0 M HCl stock solution do I need in order to make 755 mL of 1.50 M HCl solution?
2. (10 Points) If I want to make 150 mL of a .55 M solution of KOH , how many grams should I add?
3. (10 Pts) $\mathrm{H}_{2} \mathrm{SO}_{4}$ is neutralized by NaOH following the balanced chemical reaction given below:

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})
$$

How many mL of 1.45 M NaOH are needed to completely neutralize a solution containing 65.2 mL of $2.93 \mathrm{M} \mathrm{H} \mathrm{H}_{2} \mathrm{SO}_{4}$?
4. (10 Points) Consider the following balanced equation:

$$
\mathrm{SiO}_{2}+3 \mathrm{C} \rightarrow \mathrm{SiC}+2 \mathrm{CO}
$$

If I have $12.4 \mathrm{~g} \mathrm{SiO}_{2}$ ($\mathrm{MM}=60.09 \mathrm{~g} / \mathrm{mol}$) and excess carbon, how many grams of CO ($\mathrm{MM}=28.01 \mathrm{~g} / \mathrm{mol}$) can I make?
5. (20 Pts) For the reaction shown, determine the limiting reagent and theoretical yield (in grams of $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{MM}=101.96 \mathrm{~g} / \mathrm{mol}$) if you begin with 12.3 g Al and $14.6 \mathrm{~g} \mathrm{O}_{2}$.
$4 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$

