Chapter 3 Slides

3.1-3.9

Molecules, Compounds, and Formulas

A compound is a combination of 2 or more elements in definite ratios by mass.

The character of each element is lost when forming a compound.

A molecule is a smallest unit of material that has unique identifiable physical and chemical properties

AB
$$AB_2 A_3B$$

Ionic Solid (NaCl)

Molecular Formulas

Molecular Formula: number and types of each atom.

Condensed Formula: provides additional structural information

Structural Formula: explicit structural information, the connections between atoms

Molecular Model: provides a three-dimensional perspective of structure

Molecular Formulas

110224.5 .449v41

Molecular Models

Naming Binary Molecular (Covalent) Compounds

- 1. Name the "more cation-like" of the two elements. This is usually the first element if you have the formula written.
- Name the second element in the formula with an -*ide,* as if it were an anion.

However, remember these compounds do not contain ions!

3. Use a prefix in front of each name to indicate the number of atoms.

Never use the prefix *mono-* on the first element.

Naming Binary Molecular (Covalent) Compounds

1- mono	5- penta
2- di	6- hexa
3- tri	7- hepta
4- tetra	8- octa

Drop the a if the prefix is used with an element that begins with a vowel!

Example—Naming Binary Molecular, BF_3 , Continued

- 4. Pick the more cation-like element. boron.
- 5. Name the second element with an *-ide.*

Fluorine \Rightarrow fluoride.

- 6. Add a prefix to each name to indicate the subscript. monoboron, trifluoride.
- 7. Write the first element with prefix, then the second element with prefix.
 - Drop prefix *mono-* from first element.

boron trifluoride.

Practice – Naming Covalent Compounds

• NO

• NO₂

• N₂O₅

Ionic Solid (NaCl)

Type I Metal forms only one type of ion **Type II** Metal forms more than one type of ion

Copyright © 2009 Pearson Prentice Hall, Inc.

Type I: Main Group Cations and Anions

Copyright © 2009 Pearson Prentice Hall, Inc.

Some Common Polyatomic Ions

Name	Formula
Acetate	$C_{2}H_{3}O_{2}^{-}$
Carbonate	CO ₃ ^{2–}
Hydrogencarbonate (aka bicarbonate)	HCO ₃ ⁻
Hydroxide	OH-
Nitrate	NO ₃ ⁻
Nitrite	NO ₂ ⁻
Chromate	CrO ₄ ^{2–}
Dichromate	Cr ₂ O ₇ ^{2–}
Ammonium	NH ₄ ⁺
Phosphate	PO ₄ ³⁻
Dihydrogen Phosphate	$H_2PO_4^-$

Hypochlorite	C10-
Chlorite	ClO ₂ ⁻
Chlorate	ClO ₃ -
Perchlorate	ClO ₄ ⁻
Sulfate	SO ₄ ^{2–}
Sulfite	SO ₃ ^{2–}
Thiosulfate	S ₂ O ₃ ²⁻
Hydrogen phosphate	HPO ₄ ²⁻
Hydrogen sulfate (aka bisulfate)	HSO ₄ ⁻
Hydrogen sulfite (aka bisulfite)	HSO ₃ ⁻
Cyanide	CN-
Permanganate	MnO ₄ -

Naming Type I Binary Ionic Compounds

name of cation (metal)

base name of anion (nonmetal) + *-ide*

Copyright © 2009 Pearson Prentice Hall, Inc.

Name the Following:

- CsBr₂
- Al₂O₃

• KMnO₄

• NH₄NO₃

Type II: Metal could form more than one cation

Naming a Type II Binary Ionic Compound

name of cation (metal)

charge of cation (metal) in roman numerals in parentheses base name of anion (nonmetal) + *-ide*

Copyright © 2009 Pearson Prentice Hall, Inc.

Practice–Name the Following Compounds.

• TiCl₄

• PbBr₂

• Fe_2S_3

Practice–Name the Following

1. NH₄Cl

2. $Ca(C_2H_3O_2)_2$

3. $Cu(NO_3)_2$

Practice–Name the Following, Continued

1. NH₄Cl Ammonium chloride.

2. $Ca(C_2H_3O_2)_2$ Calcium acetate.

3. $Cu(NO_3)_2$ Copper(II) nitrate.

 $NO_3 = 2(-1) = -2$ Cu = +2 = 1(2+) Writing Formulas from the Names of Ionic Compounds

- 1. Write the symbol for the cation and its charge.
- 2. Write the symbol for the anion and its charge.
- 3. Charge (without sign) becomes subscript for the other ion.
- 4. Reduce subscripts to smallest whole-number ratio.
- Check that the total charge of the cations cancels the total charge of the anions.

Iron (III) phosphate **Fe**⁺³ PO₄³⁻ $Fe_{1}^{+3}PO_{1}^{3-}$ $Fe_{3}(PO_{4})_{3}$ **FePO**_A $Fe = (1) \cdot (+3) = +3$ $PO_4 = (1) \cdot (-3) = -3$

Practice—What Are the Formulas for Compounds Made from the Following Ions? 1. Aluminum ion with a sulfate ion.

2. Chromium(II) with hydrogencarbonate.

Practice—What Are the Formulas for Compounds Made from the Following Ions?, Continued

1. Al^{+3} with SO_4^{2-} $Al_2(SO_4)_3$

2. Cr^{+2} with HCO_3^{-1}

 $Cr(HCO_3)_2$

Hydrates

A hydrate is a substance composed of an inorganic salt and physically bound water.

n = is the ratio of moles of water to 1 mole of the salt

$$n = \frac{mols H_2O}{mols MX}$$

Naming Hydrates

Salt name + prefix hydrate

prefix: mono, di, tri etc...

Molecular Weight

Molecular weight is sum of the atomic weights of all atoms in the molecule.

Molar mass is the molecular weight in grams

1 mol of ethanol C_2H_6O contains:

 $2 \text{ mol} \times C (12.01 \text{ g C}/1 \text{ mol}) = 24.02 \text{ g C}$

 $6 \text{ mol} \times \text{H} (1.01 \text{ g H/1 mol}) = 6.06 \text{ g H}$

 $1 \text{ mol} \times O (16.00 \text{ g O}/1 \text{ mol}) = 16.00 \text{ g O}$

TOTAL = molar mass = 46.08 g/mol

Molecular Weights and Moles

ole of		Contains
or	159.80 g	6.022x10 ²³ Br ₂ molecules
		2x(6.022x10 ²³) Br atoms
or	94.07 g	6.022x10 ²³ C ₆ H ₆ O molecules
		6x(6.022x10 ²³) C atoms 6x(6.022x10 ²³) H atoms 1x(6.022x10 ²³) O atoms
	ole of or or	ole of or 159.80 g or 94.07 g

Using the Molecular Formula as a Conversion Factor

Percent Composition

Given a chemical formula it is straightforward to find mass percentages

Find the molar mass and the mass from each element

Ethanol, C_2H_6O

%C = $(24.02 \text{ g C})/(46.08 \text{ g total}) \times 100 = 52.13\% \text{ C}$

13.15% H

34.72% O

Formulas from Elemental Composition

Given the relative percentages of each element in a compound one can find the *empirical formula* of the compound

The empirical formula of a compound or molecule represents the simplest ratio of each element in 1 mol of the compound or molecule.

Benzene:

CHempirical formula C_6H_6 molecular formula