Molecular Shapes

VSEPR Model

- Valence-Shell Electron-Pair Repulsion
- Bonds (single or multiple) and lone pairs are thought of as charge clouds
 - They repel each other and stay as far away from each other as possible
 - Because of this, molecules assume specific 3D geometries based on the lone pairs and bonds made.

Electron Groups

- The Lewis structure predicts the arrangement of valence electrons around the central atom(s).
- Each lone pair of electrons constitutes one electron group on a central atom.
- Each bond constitutes one electron group on a central atom.
 - Regardless of whether it is single, double, or triple.

There are 3 electron groups on N.

- 1 lone pair.
- 1 single bond.
- 1 double bond.

Steps to Predicting a VSEPR Geometry

- 1. Draw the Electron-Dot Structure
- 2. Identify the number of bonds and lone pairs.
- 3. Predict the arrangement assuming that the clouds orient so that they are as far apart as possible.
 - Note that actual shape is based on where atoms are, not the lone pairs.

Two Charge Clouds

A CO₂ molecule is linear, with a bond angle of 180°.

An HCN molecule is linear, with a bond angle of 180°.

Unnumbered 7 p243b Chemistry, 5/e © 2008 Pearson Prentice Hall, Inc.

Three Charge Clouds

Four Charge Clouds

Sketching a Molecule

- Because molecules are three-dimensional objects, our drawings should indicate their three-dimensional quality
- By convention:
 - A filled wedge indicates that the attached atom is coming out of the paper toward you.
 - A dashed wedge indicates that the attached atom is going behind the paper away from you.

Sketching a Molecule, Continued

Four Charge Clouds

Copyright © 2008 Pearson Prentice Hall, Inc.

Chapter 7/10

Five Charge Clouds

© 2008 Pearson Prentice Hall, Inc.

Six Charge Clouds

Six Charge Clouds

Valence Bond Theory

Valence Bond Theory: A quantum mechanical model which shows how electron pairs are shared in a covalent bond.

Valence Bond Theory

Valence Bond Theory: A quantum mechanical model which shows how electron pairs are shared in a covalent bond.

- Covalent bonds are formed by overlap of atomic orbitals, each of which contains one electron of opposite spin.
- Each of the bonded atoms maintains its own atomic orbitals, but the electron pair in the overlapping orbitals is shared by both atoms.
- The greater the amount of overlap, the stronger the bond.

How can the bonding in CH₄ be explained?

4 valence electrons 2 unpaired electrons

Carbon: ground-state electron configuration

Unnumbered 7 p251a Chemistry, 5/e © 2008 Pearson Prentice Hall, Inc.

How can the bonding in CH₄ be explained?

4 valence electrons4 unpaired electrons

Carbon: ground-state electron configuration

Carbon: excited-state electron configuration

Unnumbered 7 p251a Chemistry, 5/e © 2008 Pearson Prentice Hall, Inc.

How can the bonding in CH₄ be explained?

Unnumbered 7 p251b Chemistry, 5/e © 2008 Pearson Prentice Hall, Inc.

How can the bonding in CH₄ be explained?

Unnumbered 7 p251b Chemistry, 5/e © 2008 Pearson Prentice Hall, Inc.

Figure 7-6 Chemistry, 5/e © 2008 Pearson Prentice Hall, Inc.

Copyright © 2008 Pearson Prentice Hall, Inc.

Chapter 7/21

Figure 7-7 Chemistry, 5/e © 2008 Pearson Prentice Hall, Inc.

The hybrid orbitals lie in a plane at angles of 120° to one another, and one unhybridized *p* orbital remains, oriented at a 90° angle to the *sp*² hybrids. (The large lobes are shown in green, and the small lobes are not shown.)

Figure 7-8 Chemistry, 5/e © 2008 Pearson Prentice Hall, Inc.

Figure 7-9 Chemistry, 5/e © 2008 Pearson Prentice Hall, Inc.

Copyright © 2008 Pearson Prentice Hall, Inc.

Chapter 7/24

The combination of one *s* and one *p* orbital gives two *sp* hybrid orbitals oriented 180° apart.

In addition, two unhybridized p orbitals remain, oriented at 90° angles to the *sp* hybrids.

Figure 7-10 Chemistry, 5/e © 2008 Pearson Prentice Hall, Inc.

Figure 7-11 Chemistry, 5/e © 2008 Pearson Prentice Hall, Inc.

TABLE 7.5 Hybrid Orbitals and Their Geometry

Number of Charge Clouds	Geometry of Charge Clouds	Hybridization
2	Linear	sp
3	Trigonal planar	sp ²
4	Tetrahedral	sp ³

Table 7-5 Chemistry, 5/e © 2008 Pearson Prentice Hall, Inc.

The Continuum of Bond Types

© 2011 Pearson Education, Inc.

© 2011 Pearson Education, Inc.

Bond Polarity

TABLE 9.2Dipole Moments of SeveralMolecules in the Gas Phase

Molecule	ΔEN	Dipole Moment (D)
Cl ₂	0	0
CIF	1.0	0.88
HF	1.9	1.82
LiF	3.0	6.33

© 2011 Pearson Education, Inc.

Molecular Polarity

- Diatomic: Same as bond polarity
- 3 or more atoms:
 - Depends on two things:
 - Individual bond polarities
 - 3D Shape of molecule
 - If a molecule is nonpolar, the bond polarities must be the same (not necessarily nonpolar), AND the shape must be symmetric.

THINK SYMMETRY!!!

Population Density: Texas

Population Density: Wyoming

Source: U. S. Census Bureau Census 2000 Summary File 1 population by census tract.

Tetrahedral geometry

Electron Density Maps

CH₄

Electron Density Maps

CH₄

CH₃Br

Electron Density Maps

© 2011 Pearson Education, Inc.

Net dipole moment

© 2011 Pearson Education, Inc.

Polar or Non?

Larger Molecules: Nonpolar

cyclohexane

18-crown-6

The Bigger Picture: Guanine and Cytosine

Protein Folding

© 2011 Pearson Education, Inc.