College Chemistry 1
Stoichiometry Practice Lab
(These will be graded for CORRECTNESS. You have plenty of time to make sure that you are doing everything correctly, so make sure you take the time to work them carefully! Like an exam, work must be shown for any credit!)

1. Calculate how many moles of NH_{3} form when 2.8 mol of $\mathrm{N}_{2} \mathrm{H}_{4}$ completely reacts according to the following reaction:

$$
\mathrm{N}_{2} \mathrm{H}_{4} \rightarrow \mathrm{NH}_{3}+\mathrm{N}_{2}
$$

2. One method for preparing pure iron metal from iron (III) oxide is by reaction with carbon monoxide. The (unbalanced) reaction is shown below:

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{CO}(\mathrm{~g}) \rightarrow \mathrm{Fe}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

a) How many grams of CO are needed to react with $4.085 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}$?
b) How many grams of Fe are prepared when $1.498 \mathrm{~kg} \mathrm{Fe}_{2} \mathrm{O}_{3}$ are reacted in the presence of excess CO?
3. The production of hydroiodic acid (HI) takes place by reaction of iodine and hydrazine:

$$
\mathrm{I}_{2}+\mathrm{N}_{2} \mathrm{H}_{4} \rightarrow \mathrm{HI}+\mathrm{N}_{2}
$$

a) According to the balanced reaction, when 1 mole of $\mathrm{N}_{2} \mathrm{H}_{4}$ reacts, how many moles of HI will be formed? \qquad
b) How many grams of HI are produced when $28.4 \mathrm{~g} \mathrm{I}_{2}$ are reacted in excess $\mathrm{N}_{2} \mathrm{H}_{4}$?
4. Elemental hydrogen and chlorine (remember they are diatomics!) react to produce HCl .
a) Write the balanced equation for this reaction.
b) If I produce 59.63 g HCl , how many grams hydrogen reacted?
c) If I produce 59.63 g HCl , how many grams chlorine reacted?
5. We prepare a solution by mixing 0.10 L of 0.18 M NaCl with 0.35 L of 0.24 M CaCl . Note that no reaction occurs here.
a) What is the concentration of Cl^{-}in the resulting mixture?
b) Chloride ions can be precipitated using a solution of AgNO_{3}. Write a balanced net ionic equation for the reaction that occurs between $\mathrm{Cl}(\mathrm{aq})$ and $\mathrm{AgNO}_{3}(\mathrm{aq})$.
c) What volume of $0.86 \mathrm{M} \mathrm{AgNO}_{3}$ is needed to precipitate all of the chloride ions in the solution as AgCl ?
6. Urea $\left(\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}\right)$ is a common fertilizer made by the reaction of NH_{3} and carbon dioxide according to the following reaction. In a synthesis of urea, a student combines 136.4 g NH 3 with 211.4 g CO_{2} and obtains 168.4 g urea.

$$
\mathrm{NH}_{3}+\mathrm{CO}_{2} \rightarrow \mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}
$$

a) What is the limiting reactant in this reaction?
b) What is the theoretical yield for the reaction?
c) Calculate the percent yield for the reaction.
7. Pennies minted after 1982 are mostly made of zinc (97.5%). If the Zinc from a post-1982 penny having a mass of 2.459 g (total mass, not just Zn) is reacted in nitric acid in a solution with a total volume of 250.0 mL , what is the resulting concentration of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$?

$$
\mathrm{Zn}(\mathrm{~s})+\mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

8. When 75.0 mL of a 0.100 M lead(II) nitrate solution is mixed with 100.0 mL of a 0.190 M solution of potassium iodide, a yellow precipitate appears.
a) Write and balance the precipitation reaction described above.
b) What mass of precipitate is formed if the reaction is assumed to go to completion?
9. A 27.00 mL sample of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is titrated with 0.32 M KOH . The titration requires 153.54 mL of KOH to reach the equivalence point. What is the molarity of the $\mathrm{H}_{2} \mathrm{SO}_{4}$ sample?

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{KOH} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{K}_{2} \mathrm{SO}_{4}
$$

10. A reaction mixture initially contains only P_{4} and Cl_{2}. They react according to the following reaction:

$$
\mathrm{P}_{4}+\mathrm{Cl}_{2} \rightarrow \mathrm{PCl}_{3}
$$

a) A reaction contains $50.86 \mathrm{~g} \mathrm{P}_{4}$ and $125.45 \mathrm{~g} \mathrm{Cl}_{2}$. What is the theoretical yield of PCl_{3} ?
b) How much of the excess reactant remains after the reaction goes to completion?

