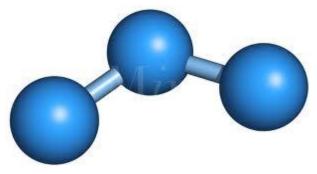
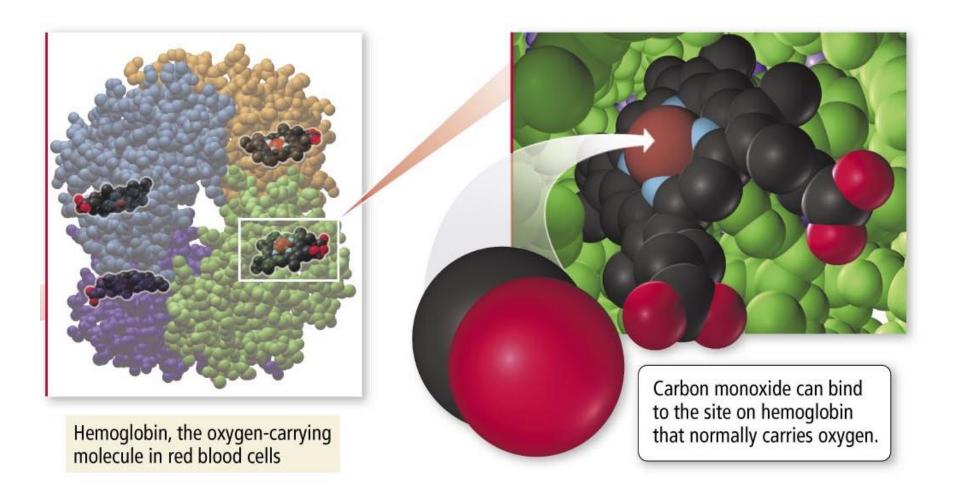

Chapter 1 Notes


CHEM1450 S2016

Chemistry: Why am I here?

- Chemistry
 - The science that seeks to understand the behavior of matter by studying the BEHAVIOR of atoms and molecules.
 - Not just a cause and effect... looks for the WHY and HOW
- One of my main objectives in this course is to help you KNOW atoms and molecules so that you can explain their behaviors.


The Antarctic Ozone Hole



Hemoglobin and Carbon monoxide

What we observe...

Chemical symbols allow us to connect...

CHAPTER 1

232.0381

231.03588 238.0289

The Periodic Table of the Elements

1																	2
Ĥ																	He
Hydrogen 1.00794																	Helium 4.003
3	4]										5	6	7	8	9	10
Li	Be											В	С	N	0	F	Ne
Lithium 6.941	Beryllium 9.012182											Boron 10.811	Carbon 12.0107	Nitrogen 14.00674	Oxygen 15.9994	Fluorine 18.9984032	Neon 20.1797
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	Р	S	Cl	Ar
Sodium 22.989770	Magnesium 24.3050											Aluminum 26.981538	Silicon 28.0855	Phosphorus 30.973761	Sulfur 32.066	Chlorine 35.4527	Argon 39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium 39.0983	Calcium 40.078	Scandium 44.955910	Titanium 47.867	Vanadium 50.9415	Chromium 51.9961	Manganese 54.938049	Iron 55.845	Cobalt 58.933200	Nickel 58.6934	Copper 63.546	Zinc 65.39	Gallium 69.723	Germanium 72.61	Arsenic 74.92160	Selenium 78.96	Bromine 79.904	Krypton 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
Rubidium 85.4678	Strontium 87.62	Yttrium 88.90585	Zirconium 91.224	Niobium 92.90638	Molybdenum 95.94	Technetium (98)	Ruthenium 101.07	Rhodium 102.90550	Palladium 106.42	Silver 107.8682	Cadmium 112.411	Indium 114.818	Tin 118.710	Antimony 121.760	Tellurium 127.60	Iodine 126.90447	Xenon 131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Ро	At	Rn
Cesium 132.90545	Barium 137.327	Lanthanum 138.9055	Hafnium 178.49	Tantalum 180.9479	Tungsten 183.84	Rhenium 186.207	Osmium 190.23	Iridium 192.217	Platinum 195.078	Gold 196.96655	Mercury 200.59	Thallium 204.3833	Lead 207.2	Bismuth 208.98038	Polonium (209)	Astatine (210)	Radon (222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114				ľ
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									ſ
Francium (223)	Radium (226)	Actinium (227)	Rutherfordium (261)	Dubnium (262)	Seaborgium (263)	Bohrium (262)	Hassium (265)	Meitnerium (266)	(269)	(272)	(277)						
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
				Ce Cerium	Pr Praseodymium	Nd Neodymium	Pm Promethium	Sm Samarium	Eu Europium		Tb Terbium	Dy Dysprosium	Ho Holmium	Erbium	Tm Thulium	Yb Ytterbium	Lu
				140.116	140.90765	144.24	(145)	150.36	151.964	157.25	158.92534	162.50	164.93032	167.26	168.93421	173.04	174.967
				90	91	92	93	94	95	96 ~	97	98	99	100	101	102	103
				Th Thorium	Pa Protactinium	U	Np Neptunium	Pu Plutonium	Am Americium	Cm Curium	Bk Berkelium		Es Einsteinium	Fm	Md Mendelevium	No Nobelium	Lr
				232 0381	231 03588		(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(250)	(262)

(244)

(237)

(243)

(247)

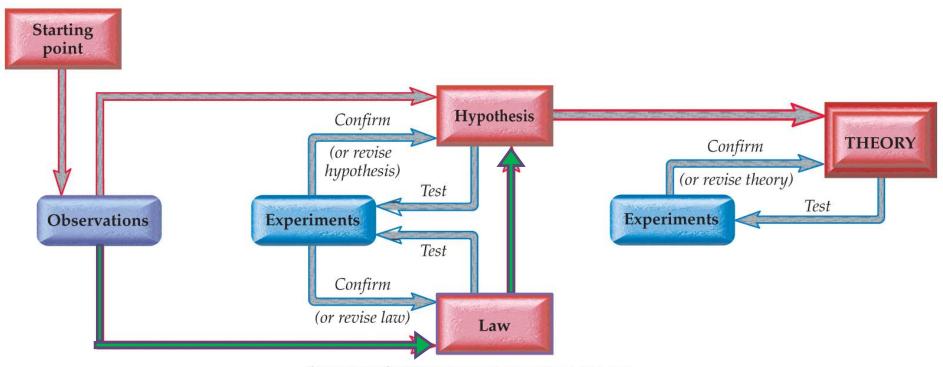
(247)

(251)

(252)

(257)

(258)


(259)

(262)

The Scientific Method

 A process for trying to understand nature by observing nature and the way it behaves, and by conducting experiments to test our ideas.

The Scientific Method

Copyright © 2009 Pearson Prentice Hall, Inc.

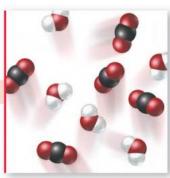
What's the Difference Between an Observation and a Law?

- An **observation** tells you what happened in a single event.
- A **law** summarizes *all* the observations, effectively telling you what you will observe in future events.

The Law of Conservation of Matter

There is no observable change in the quantity of matter during a *chemical reaction or during a physical change*

The Law of Conservation of Energy


Energy cannot be created or destroyed in a *chemical reaction or in a physical change*. It can only be converted from one form to another.

Not defying COM!

Propane gas burning:

$$C_3H_8(g) + 5O_2(g) \longrightarrow$$

 $3 CO_2(g) + 4 H_2O(g)$
Chemical composition altered
Chemical change

CO₂(*g*), H₂O(*g*) Carbon dioxide and water molecules

C₃H₈(g) Propane molecules What's the Difference Between a Hypothesis and a Theory?

- A **hypothesis** is an explanation of a single or small number of observations.
- A theory is an explanation that extends beyond individual observations to an understanding of the underlying causes for the way nature is or behaves.

What's the Difference Between a Law and a Theory?

- Laws answer the question "What" will happen.
- Theories answer the question "Why" does something happen.
 - This allows you to predict what will happen!

Relationships Between Pieces of the Scientific Method

	Applies to single or small number of events	Applies to all events
Describes <i>what</i> happens	observation	law
Explains <i>why</i> things happen	hypothesis	theory

Chemical and Physical Properties

Physical Properties: a property that a substance displays without changing its composition (*ex*. Color, melting point, boiling point)

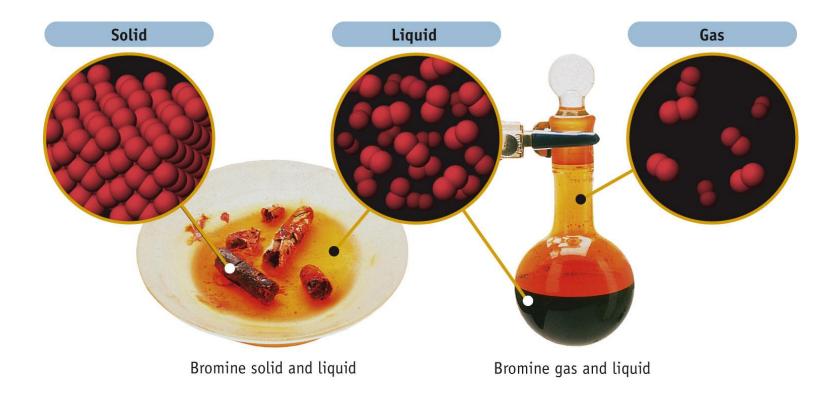
Chemical Properties: a property only displayed when a change in composition occurs (ex: combustable, stable, explosive) Which of the following is a chemical property?

- a. squeezing oranges to make orange juice
 b. melting butter for popcorn
- c. separating sand from gravel
- d.hydrogen peroxide decomposes to water and oxygen
- e.ozone is a gas at room temperature

Chemical and Physical Properties

Extensive Properties: dependent on the amount of material present (*ex*. mass, volume)

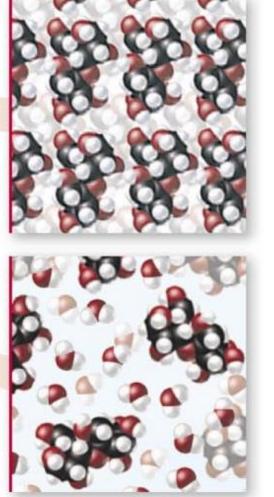
Intensive Properties: independent on the amount of material present (*ex*. color, density)


Which of the following would NOT be considered an *intensive property* describing an unknown sample?

- It is a solid at 25 $^{\circ}$ C.
- It has a density of 1.38 g/ cm³.
- It melts at 62.0 ° C.
- It has a volume of 0.52 cm³.
- It is shiny.

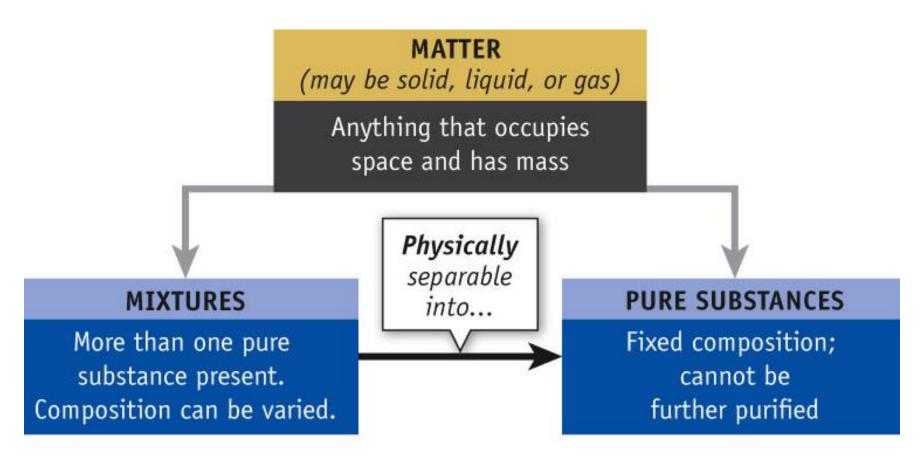
States of Matter (Physical Property)

- •Solid
- •Liquid
- •Gas



States of Matter (Physical Property)

•Aqueous (aq) -dissolved in water



 $C_{12}H_{22}O_{11}(s)$ Solid sugar

C₁₂H₂₂O₁₁(*aq*) Dissolved sugar molecules

Classifying Matter

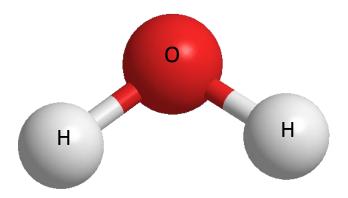
Pure Substances

A pure substance has well defined physical and chemical properties.

Pure substances can be classified as *elements* or *compounds*.

The only way to further separate a pure substance is through chemical means.

Elements


The Periodic Table of the Elements

1 H Hydrogen 1.00794																	2 He Helium 4.003
3	4											5	6	7	8	9	10
Li	Be											B	С	Ν	0	F	Ne
Lithium 6.941	Beryllium 9.012182											Boron 10.811	Carbon 12.0107	Nitrogen 14.00674	Oxygen 15.9994	Fluorine 18.998403	Neon 20.1797
11	12	1										13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
Sodium 22.989770	Magnesium 24.3050											Aluminum 26.981538	Silicon 28.0855	Phosphorus 30.973761	Sulfur 32.066	Chlorine 35.4527	Argon 39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium 39.0983	Calcium 40.078	Scandium 44.955910	Titanium 47.867	Vanadium 50.9415	Chromium 51.9961	Manganese 54.938049	Iron 55.845	Cobalt 58.933200	Nickel 58.6934	Copper 63.546	Zinc 65.39	Gallium 69.723	Germanium 72.61	Arsenic 74.92160	Selenium 78.96	Bromine 79,904	Krypton 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
Rubidium 85,4678	Strontium 87.62	Yttrium 88,90585	Zirconium 91.224	Niobium 92.90638	Molybdenum 95,94	Technetium (98)	Ruthenium 101.07	Rhodium 102.90550	Palladium 106.42	Silver 107.8682	Cadmium 112.411	Indium 114.818	Tin 118.710	Antimony 121.760	Tellurium 127.60	Iodine 126.90447	Xenon 131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Ро	At	Rn
Cesium 132.90545	Barium 137.327	Lanthanum 138,9055	Hafnium 178.49	Tantalum 180,9479	Tungsten 183.84	Rhenium 186.207	Osmium 190.23	Iridium 192.217	Platinum 195.078	Gold 196.96655	Mercury 200.59	Thallium 204.3833	Lead 207.2	Bismuth 208,98038	Polonium (209)	Astatine (210)	Radon (222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114		(===)	(=)	(/
Francium (223)	Radium (226)	Actinium (227)	Rf Rutherfordium (261)	Db Dubnium (262)	Seaborgium (263)	Bh Bohrium (262)	Hs Hassium (265)	Mt Meitnerium (266)	(269)	(272)	(277)						

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
140.116	140.90765	144.24	(145)	150.36	151.964	157.25	158.92534	162.50	164.93032	167.26	168.93421	173.04	174.967
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
232.0381	231.03588	238.0289	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

Compounds

Chemical compounds are composed of two or more atoms.

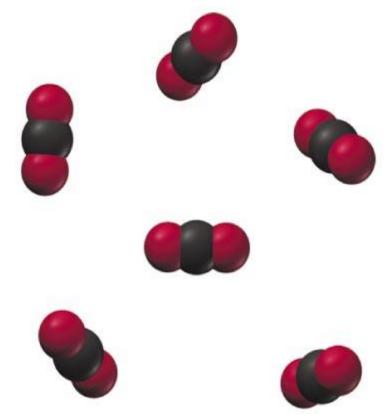
Water Molecule

Chemical Formula

 H_2O

A molecule is the smallest unit of a compound that retains the chemical characteristics of the compound.

Mixtures: Homogeneous and Heterogeneous


A homogeneous mixture consists of two or more substances in the same phase. No amount of optical magnification will reveal a homogeneous mixture to have different properties in different regions.

A heterogeneous mixture does not have uniform composition. Its components are easily visually distinguishable.

When separated, the components of both types of mixtures yield pure substances.

Which of the following is correct for the material pictured?

- a gaseous pure substance
- a liquid pure substance
- a gaseous mixture
- a solid mixture
- none of the above

Which of the following is a pure substance?

a. sweat
b. beef stew
c. coffee
d. apple juice
e. ice

Which of the following is a heterogeneous mixture?

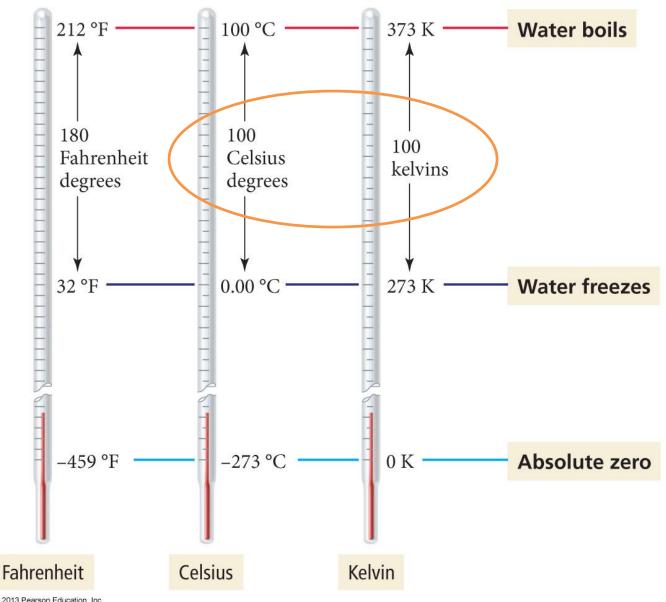
a. seawater
b. chicken soup
c. coffee
d. hydrogen peroxide

e.ice

The Importance of Units

Sept 30th 1999

"NASA lost a 125 million dollar Mars orbiter because one engineering team used metric units while another used English units for a key spacecraft operation, according to a review finding released Thursday"

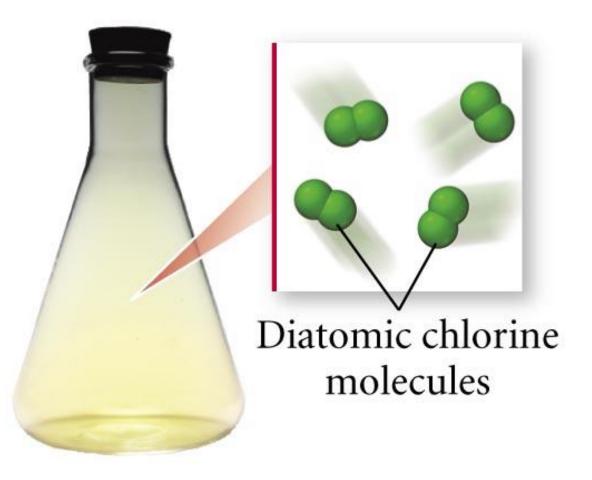

TABLE 1.1 SI Base Units

Quantity	Unit	Symbol
Length	Meter	m
Mass	Kilogram	kg
Time	Second	S
Temperature	Kelvin	Κ
Amount of substance	Mole	mol
Electric current	Ampere	Α
Luminous intensity	Candela	cd

© 2013 Pearson Education, Inc.

CHAPTER 1

Temperature Scales



© 2013 Pearson Education, Inc.

Chlorine vaporizes at –34.4 °C. What is this temperature in degrees Fahrenheit?

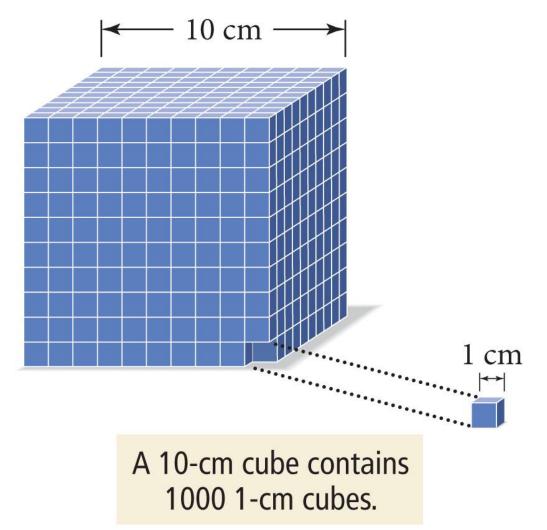

- -34.4 °F
- -29.9 °F
- 238.75 °F
- 307.55 °F
- 273.15 °F

TABLE 1.2 SI Prefix Multipliers

Prefix	Symbol	Multiplier	
еха	Е	1,000,000,000,000,000,000	(10 ¹⁸)
peta	Р	1,000,000,000,000,000	(10 ¹⁵)
tera	Т	1,000,000,000,000	(10 ¹²)
giga	G	1,000,000,000	(10 ⁹)
mega	Μ	1,000,000	(10 ⁶)
kilo	k	1000	(10 ³)
deci	d	0.1	(10 ⁻¹)
centi	C	0.01	(10 ⁻²)
milli	m	0.001	(10^{-3})
micro	μ	0.000001	(10 ⁻⁶)
nano	n	0.00000001	(10 ⁻⁹)
pico	р	0.00000000001	(10^{-12})
femto	f	0.00000000000001	(10 ⁻¹⁵)
atto	а	0.0000000000000000000000000000000000000	(10 ⁻¹⁸)

Relationship between Length and Volume

© 2013 Pearson Education, Inc.

Sig Fig Rules:

1. All nonzero digits ARE significant.

2. Zeroes

- a) Interior zeroes ARE significant.
- b) Leading zeroes ARE NOT significant.
- c) Trailing zeroes ARE significant IF they are after a decimal point.
- 3. Exact numbers (counted, or integral numbers used in an equation) have infinite sig figs.

- Sig Fig Math
- In Multiplication or Division, the result carries the same number of sig figs as the factor with the least.
- In add/subtract, the result carries the same number of decimal places as the quantity with the fewest decimal places.
- Rounding
- 1. When rounding, round up if the digit dropped is 5 or more.
- 2. Avoid rounding errors by rounding only the final answer.