Solution Chemistry

Chapter 4

Covalent Molecule Dissolving in Water

Ionic Compound Dissolving in Water

Electrolytes and Nonelectrolytes

Electrolyte and Nonelectrolyte Solutions

Electrolytes/Nonelectrolytes

Туре	Dissociation	Electrical Conductivity	Examples
Strong Electrolytes	Fully or Mostly (>70%)	Strong	Soluble ionic compounds Strong Acids Strong Bases
Weak Electrolytes	Some (even very little counts here)	Weak	Weak Acids Weak Bases
Nonelectrolytes	None	None	Organic Molecules Sugars, alcohols

Ionic Dissociation

When ionic compounds dissolve in water, the anions and cations are separated from each other. This is called **dissociation**.

- You should think of ALL AQUEOUS, IONIC compounds as DISSOCIATED.
- AQUEOUS ACIDS may also be considered as DISSOCIATED

Molarity of lons

 Calculate the Molarity of a solution if 15.25 g of Mg(NO₃)₂ is dissolved in water to a final volume of 250 mL.

- Now, calculate the molarity of nitrate ions found in the solution.
- What is the total ion concentration?

Solubility Rules (Table 4.1, provided on the exam) (Compounds That Are Generally Soluble in Water)

Compounds Containing the Following Ions Are Generally Soluble:	Exceptions (when combined with ions on the left, the compound is insoluble)
Li ⁺ , Na ⁺ , K ⁺ , NH ₄ ⁺	none
$NO_{3}^{-}, C_{2}H_{3}O_{2}^{-}$	none
Cl⁻, Br⁻, l⁻	Ag ⁺ , Hg ₂ ²⁺ , Pb ²⁺
SO ₄ ²⁻	Ag ⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Pb ²⁺

Solubility Rules (Table 4.1, cont.) (Compounds That Are Generally Insoluble in Water)

Compounds Containing the Following Ions Are Generally Insoluble:	Exceptions (when combined with ions on the left, the compound is soluble or slightly soluble)
OH-	Li ⁺ , Na ⁺ , K ⁺ , NH ₄ ⁺ ,
	Ca ²⁺ , Sr ²⁺ , Ba ²⁺
S ^{2–}	Li ⁺ , Na ⁺ , K ⁺ , NH ₄ ⁺ ,
	Ca ²⁺ , Sr ²⁺ , Ba ²⁺
CO ₃ ^{2–} , PO ₄ ^{3–}	Li ⁺ , Na ⁺ , K ⁺ , NH ₄ ⁺

Which of the following salts are soluble in water?

KOH

AgBr

 $CaCl_2$

 $Pb(NO_3)_2$

 Pbl_2

Net Ionic Equations

$Mg(NO_3)_2(aq) + K_2CrO_4(aq) \rightarrow MgCrO_4(s) + 2 KNO_3(aq)$

The above chemical reaction is written as a "molecular equation."

- Because $Pb(NO_3)_2$ and K_2CrO_4 are strong electrolytes we can write

$$Mg^{2+}(aq) + 2 NO_{3}^{-}(aq) + 2 K^{+}(aq) + CrO_{4}^{2-}(aq)$$

$$\rightarrow MgCrO_{4}(s) + 2 K^{+}(aq) + 2 NO_{3}^{-}(aq)$$

This is written now as a "complete ionic equation."

Question: What about K⁺ and NO₃⁻ ions? Answer: They are "spectator ions." These ions DO NOT participate in the reaction.

Net Ionic Equations

Complete ionic equation:

 $Mg^{2+}(aq) + 2 NO_{3}^{-}(aq) + 2 K^{+}(aq) + CrO_{4}^{2-}(aq)$ $\rightarrow MgCrO_{4}(s) + 2 K^{+}(aq) + 2 NO_{3}^{-}(aq)$

Spectator ions are left out when writing net ionic equations.

 $Mg^{2+}(aq) + CrO_4^{2-}(aq) \rightarrow MgCrO_4(s)$ is the NET IONIC EQUATION for this reaction.

$AlCl_3(aq) + NH_4NO_3(aq) \rightarrow Al(NO_3)_3(aq) + NH_4Cl(aq)$

$K_2SO_4(aq) + 2 \operatorname{AgNO}_3(aq) \rightarrow \operatorname{Ag}_2SO_4(s) + 2 \operatorname{KNO}_3(aq)$

Evidence of a Reaction

- 1. Produces Light
- 2. Absorbs/Gives off Heat
- 3. Forms Bubbles
- 4. Forms a Precipitate (solid)
- 5. Color Change

Reactions in Solution

Double Displacement Reactions (Exchange of Ions)

Precipitation Reactions

 $AB(aq) + CD(aq) \longrightarrow AD(s) + CB$

Acid/Base Neutralization Reactions

 $HA(aq) + MOH(aq) \longrightarrow H_2O(l) + MA(aq)$

Gas Evolution Reaction

$$AB(aq) + CD(aq) \longrightarrow AD(g) + CB$$

Reactions in Solution

• Redox Reactions (Exchange of Electrons)

Combustion Reactions

$$fuel + O_2 \longrightarrow CO_2 + H_2O$$

 Single Displacement Reactions (can sometimes be gas evolution reactions when A=H)

 $M + AB \longrightarrow MB + A$

Precipitation Reaction

<u>Problem</u>: Write the equation for the precipitation reaction between an aqueous solution of potassium carbonate and an aqueous solution of nickel(II) chloride.

Strategy for writing an equation for a double displacement reaction:

- **1.** Write the formulas of the reactants.
- 2. Determine the possible products.
 - a) Determine the ions present.
 - b) Exchange the ions.
 - c) Write the formulas of the products.
- **3.** Determine the solubility of each product.
- 4. If both products soluble, write no reaction.
- 5. Write (*aq*) next to soluble products and (*s*) next to insoluble products.
- 6. Balance the equation.

Review Problem

What is the mass and identity of the precipitate formed when you mix 25 mL of 0.150M Fe(NO₃)₃ and 15mL of 0.204M NaOH?

Acid-Base Reactions

• The "driving force" for many strong acid- strong base reactions is the formation of water.

 $NaOH(aq) + HCI(aq) \rightarrow NaCI(aq) + H_2O(I)$

- Net ionic equation: OH⁻ (aq) + H⁺ (aq) → H₂O(/)
- A common product of many acid-base reactions is water and a SALT, MX.
 HX + MOH → MX + H₂O
 Mⁿ⁺ comes from base and Xⁿ⁻ comes from acid.
- Acid-base reactions are referred to as NEUTRALIZATION reactions.

Gas Evolution Reactions

• Direct Formation

- Acid + metal sulfide \rightarrow H₂S (g)

- Indirect Formation
 - When H₂SO₃, H₂CO₃, or NH₄OH are formed by a Double Displacement Rxn, they decompose forming a gas.

Other Patterns in Reactions: Transfer of electrons rather than ions

- The precipitation, acid/base, and gas-evolving reactions are all involved in exchanging the ions in the solution.
- Other kinds of reactions involve transferring electrons from one atom to another; these are called <u>oxidation-reduction</u> reactions.
 - Known as <u>redox reactions</u>
 - Many involve the reaction of a substance with $O_2(g)$ 4 Fe(s) + 3 $O_2(g) \rightarrow 2$ Fe₂ $O_3(s)$

Rules for Assigning Oxidation Numbers

- 1. Oxidation number of a free atom or an atom in its elemental state is 0.
- 2. The oxidation number of a monatomic ion is the same as its charge.
- 3. The sum of oxidation numbers in a polyatomic ion or compound usually has the same oxidation number it would have if it were a monatomic ion.
 - a) Hydrogen is +1 with nonmetals, -1 if bound to a metal.
 - b) Oxygen is always -2 unless in a peroxide
 - c) Halogens are usually -1, unless bound to oxygen
- 4. The sum of the oxidation numbers of all elements is equal to the compound/ion's charge.

Problem:

Assign an oxidation state to each element in the following:

- K⁺
- LiF
- H₂O₂
- CO₂
- SO₄²⁻
- $Na_2Cr_2O_7$

Oxidation and Reduction Reactions

Oxidation:

- The process that occurs when
 - the oxidation number of an element increases
 - an element loses electrons
- OXIDIZING AGENT is an electron acceptor; it causes another species to be OXIDIZED but it (agent) is being reduced.

Reduction:

- The process that occurs when
 - the oxidation number of an element decreases
 - an element gains electrons
- REDUCING AGENT is an electron donor; it causes another species to be REDUCED but it (agent) is being oxidized.

Oxidation and Reduction

- Oxidation and reduction MUST occur simultaneously.
- Oxidation occurs when an atom's oxidation state increases during a reaction.
- Reduction occurs when an atom's oxidation state decreases during a reaction.

$$2 \operatorname{H}_2(g) + \operatorname{O}_2(g) \longrightarrow 2 \operatorname{H}_2\operatorname{O}(g)$$

Hydrogen and oxygen in the balloon react to form gaseous water.

Redox without Oxygen

Combustion Reactions

 $2 C_8 H_{18}(g) + 25 O_2(g) \rightarrow 16 CO_2(g) + 18 H_2 O(g)$

 Reactions in which O₂(g) is a reactant are called combustion reactions.

• Combustion reactions release lots of energy.

 Combustion reactions are a subclass of oxidation-reduction reactions. Problem: Complete and balance the following reactions.

- 1. Combustion of acetic acid, $HC_2H_3O_2(I)$
- 2. Combustion of isopropyl alcohol, C₃H₇OH(/)