NAME $\qquad$
CHEM 1301
Stoichiometry HMWK \#10

Print this document 1 page per sheet in portrait orientation. Double sided or single sided are acceptable.

## - Moles to Moles

Use the following reaction to answer the following questions. None of the problems are connected, so don't carry information from one problem to another!

$$
4 \mathrm{Na}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Na}_{2} \mathrm{O}(\mathrm{~s})
$$

1. For the reaction shown, calculate how many moles of $\mathrm{Na}_{2} \mathrm{O}$ are formed when 0.967 moles of Na are reacted in the following reaction.
2. When 2.19 moles of Na are reacted, how many moles of $\mathrm{O}_{2}$ also react?
3. If you form 8.6943 mol $\mathrm{Na}_{2} \mathrm{O}$, how many moles of Na and how many moles of $\mathrm{O}_{2}$ were reacted?

## - Mass-to-mass Stoichiometry

Refer to the following reaction to answer the next set of problems. (Balance the reaction before you start!)

$$
\ldots \mathrm{Al}(\mathrm{~s})+\ldots \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \ldots \quad \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+\ldots \mathrm{H}_{2}(\mathrm{~g})
$$

1. A) How many grams of aluminum can be reacted using $23.65 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$ ?
B) As the reaction in part A progresses, how many grams of $\mathrm{H}_{2}$ gas are produced?
2. In a completely separate setup, I need to make $10.00 \mathrm{~g} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$. How many grams of Al should I begin the reaction with?
3. If I begin with $9.72 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$, how many grams of $\mathrm{H}_{2}$ can I make?
4. For the reaction shown, calculate how many grams of oxygen form when each quantity of reactants completely reacts.
$\qquad$
A) $2.97 \mathrm{~g} \mathrm{KClO}_{3}$
B) $0.7541 \mathrm{~g} \mathrm{KClO}_{3}$
C) $15.69 \mathrm{~kg} \mathrm{KClO}_{3}$ (NOTE THE kg!!)
D) How many grams of KCl will also form when $0.7541 \mathrm{~g} \mathrm{KClO}_{3}$ react? (Same mass as Part B)
E) Use your answer for parts B and D to show that you have not violated the Law of Mass Conservation. (Add the masses of the 2 products that you calculated, is this equal to the mass of the reactant you began with?)

## - Theoretical Yield/Pecent Yield

1. Consider the reaction below:
$\qquad$
A) A reaction initially contains 5.27 g of $\mathrm{N}_{2} \mathrm{H}_{4}$, and excess $\mathrm{N}_{2} \mathrm{O}_{4}$. What is the theoretical yield of $\mathrm{N}_{2}$ for the reaction?
B) You recover 4.95 g of $\mathrm{N}_{2}$ at the end of the reaction. What is the percent yield for the reaction?
2. A scientist calculated that he should make 20.32 g of a drug he is synthesizing from a reaction. The known percent yield of the reaction is $64.23 \%$. How much of the drug can he expect to recover at the end of his reaction?
3. A different scientist calculated that she should synthesize 8.54 g of her product but only recovers 2.98 g of it. What is the percent yield of the reaction?
