- Calculating the molarity of a solution

1. Calculate the molarity of a solution made by dissolving $20.631 \mathrm{~g} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ in enough water to make 475 mL of solution.
2. Calculate the molarity of a solution made when 8.956 g NaCl is dissolved in enough water to make 200 mL of solution.
3. If a $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution has a molarity of 3.00 , what is the molarity of the K^{+}in the solution? (Remember that the $\mathrm{K}_{2} \mathrm{CO}_{3}$ dissociates in solution, how many K^{+}are there for each $\mathrm{K}_{2} \mathrm{CO}_{3}$?)

- Using Molarity as a conversion factor.

4. How many moles of NaCl are there in a 45.00 mL sample of 2.50 M NaCl solution?
5. What volume (liters is fine) of a 3.59 M solution of LiCl contains 5.00 moles of LiCl ?
6. What is the mass of $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ that is contained in a 26.5 mL sample of $.25 \mathrm{M} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ solution?
7. I need 4.67 g of CsBr for a reaction. I found a bottle of CsBr solution in the stock room that has a concentration of 0.358 M . How many mL of the solution do I need?
8. An industry wants 15.00 L of a 4.25 M solution of $\mathrm{NH}_{4} \mathrm{NO}_{3}$. How many grams of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ are needed to make the solution?

- Molarity in stoichiometry.

9. Consider the reaction:

$$
\mathrm{K}_{2} \mathrm{~S}(\mathrm{aq})+\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{KNO}_{3}(\mathrm{aq})+\mathrm{CoS}(\mathrm{~s})
$$

What volume of $.750 \mathrm{M} \mathrm{K}_{2} \mathrm{~S}$ is needed to form 5.00 g of CoS ?

If you used the amount of $\mathrm{K}_{2} \mathrm{~S}$ you calculated above, but only recovered 3.98 g of CoS instead of the 5.00 g you thought you would make, what is the percent yield of the reaction?
10. Use the reaction in the problem above to answer the following question. If I want to react 50.0 mL of $.95 \mathrm{M} \mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}$ completely, what volume of $.465 \mathrm{M} \mathrm{K} \mathrm{K}_{2} \mathrm{~S}$ solution would I need?
11. What volume of $6.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is needed to react with 14.20 g of Aluminum in the following reaction?
\qquad $\mathrm{Al}(\mathrm{s})+\ldots \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \ldots \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+$ \qquad $\mathrm{H}_{2}(\mathrm{~g})$
12. Using the reaction above, how many grams of H_{2} will I form if I combine 3.58 g Al with 50 mL of . $450 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$?

