NAME \qquad

Su2019/ CHEM1301/ Homework 3

Due: 7/11/2019

1. Use dimensional analysis to complete the following SIMPLE unit conversions.
a) Convert 84.100 yards (yds) to inches
b) Convert 84.100 inches to yards
c) Convert 3.706 days to seconds
d) 12.004 gallons to fl oz
e) 14.600 pounds to oz
f) 87.304 Liters (L) to cups
g) 1.203×10^{8} miles to cm
h) 4.500 minutes to weeks
2. Write the conversion factor from prefix multipliers needed for the following metric conversions.

	Conversion Factor:
Example: pm to m	$1 \mathrm{pm}=10^{-12} \mathrm{~m}$
a) kg to g	
b) g to $\mu \mathrm{g}$ (micro)	
c) ML to L	
d) m to cm	
e) ns to s	

3. Using prefix multipliers, perform the following metric conversions. Show all work to receive credit, and mind your sig figs!
a) Convert 1.65 L to mL .
b) Convert $4.32 \times 10^{6} \mathrm{~mL}$ to L
c) Convert 789.35 nm to m
d) Convert $6.48 \times 10^{-8} \mathrm{~kg}$ to g
e) Convert $4.653 \times 10^{10} \mathrm{~s}$ to Ms
4. Using prefix multipliers, perform the following metric conversions. Show all work to receive credit, and mind your sig figs!

| a) Convert 1.42 kg to mg |
| :--- | :--- |
| b) Convert 131μ s to ms |
| c) Convert $1.26 \times 10^{4} \mathrm{Tm}$ to Mm |
| d) Convert 12.7 nK to $\mu \mathrm{K}$ |
| e) Convert $4.268 \times 10^{-5} \mathrm{~km}$ to mm |

5. Shake it up: Use both conventional conversion factors and metric prefix multipliers to complete the following.
a) convert 14.65 cups to mL
b) convert $2.34 \times 10^{23} \mathrm{~ns}$ to days
6. Complete the table below with conversion factors for the following volume and area conversions.

	Conversion Factor:
Example: pm^{2} to m^{2}	$1 \mathrm{pm}=10^{-12} \mathrm{~m}$ so, square numbers and units to give: $\mathbf{1 p m} \mathbf{m}^{\mathbf{2}} \mathbf{1 0}^{-\mathbf{2 4}} \mathbf{m}^{\mathbf{2}}$
a) km^{3} to m^{3}	
b) m^{2} to $\mu \mathrm{m}^{2}$ (micro)	
c) cm^{3} to m^{3}	
d) in^{2} to ft^{2}	
e) ft^{3} to mi^{3}	

7. Convert the following quantities with units of area and volume.

Convert $14.23 \mathrm{~cm}^{2}$ to in ${ }^{2}$
Convert $1.65 \times 10^{12} \mathrm{~cm}^{3}$ to m^{3}
Convert $5.32 \times 10^{-6} \mathrm{~km}^{2}$ to mm^{2}

8. Calculate the density of a sample that has a mass of 35.62 g and a volume of $4.35 \mathrm{~cm}^{3}$.
9. Glycerol is a liquid found in some cosmetics. A 1.50 L bottle of glycerol has a mass of $1.75 \times 10^{3} \mathrm{~g}$. What is the density of glycerol in kg per m^{3} ? $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
10. A ring made of pure gold has a density of $19.32 \mathrm{~g} / \mathrm{cm}^{3}$. The mass of a ring made of pure gold is 12.654 g . What volume in $\left(\mathrm{cm}^{3}\right)$ does the ring displace?
11. Another sample of gold has a volume of $21.05 \mathrm{in}^{3}$. Using the density above, what is the mass in pounds of this sample?
12. An average molecule in the room is moving at $500 \mathrm{~m} / \mathrm{s}$. What is that speed in miles per hour?
