Basic Skills:

\square Go back and forth between moles and numbers of atoms/molecules

- Convert the following quantities using Avagadro's number:

1. $3.45 \times 10^{-12} \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}=$ \qquad molecules $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$
2. 7.59×10^{45} atoms of $\mathrm{He}=$ \qquad mol He
\square Calculate molar mass

- Give the molar mass for the following atoms:

| 1. Helium (He) | |
| :--- | :--- | :--- |
| 2. Manganese (Mn) | |
| 3. Mercury (Hg) | |
| 4. Iodine (I) | |
| 5. Carbon (C) | |

- Calculate the molar mass for the following compounds:

1. $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
2. $\mathrm{C}_{6} \mathrm{H}_{12}$
3. $\mathrm{SO}_{2} \mathrm{Cl}_{2}$
\square Use molar mass as a conversion factor

- Convert the following using the information you calculated in the above section:

1. $45.00 \mathrm{~g} \mathrm{Mn}=$ \qquad mol Mn
2. $\quad 98.23 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12}=$ \qquad $\mathrm{g} \mathrm{C}_{6} \mathrm{H}_{12}$
3. $1.598 \mathrm{~g} \mathrm{SO}_{2} \mathrm{Cl}_{2}=$ \qquad molecules $\mathrm{SO}_{2} \mathrm{Cl}_{2}$
4. 1.593×10^{32} atoms $\mathrm{C}=$ \qquad g C

$\square \quad$ Use a chemical formula as a conversion factor

- Convert the following:

1. Determine the number of moles of O in $27.05 \mathrm{~mol} \mathrm{CO}_{2}$.
2. How many grams of C are in 65.98 g of $\mathrm{C}_{6} \mathrm{H}_{12}$?
3. How many grams of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ can you produce if you begin with 75.23 g Ca ?
4. How many grams of N are there in 25.9 g of $\mathrm{N}_{2} \mathrm{O}_{4}$?
