Name

Write your name on the back too.

CHEM 1402 Exam I Dr. Melissa Kelley September 29, 2011

You have 50 minutes to complete this exam. Provide the one best answer for each, following the instructions given in each section of the exam.

Multiple Choice: Select the one best answer for each question. Multiple answers will not be accepted. Each question is worth 3 points each.

1. I weighed four pennies and obtained the following data: 4.45 g 4.46 g 4.44 g 4.43 g The average true value is 4.00 g. Which of the following statements about the data is true? A. The data is precise and has systematic error. B. The data is accurate and has systematic error. C. The data is precise and has systematic and random error. D. The data is accurate and has random error. E. The data is accurate and has systematic and random error. 2. Which is the largest volume? A. 1 x $10^{12} \mu L$ D. 1 x 10⁻³ ML B. 100 cL C. 10 µL E. None listed 3. Which is the most reactive? A. Sulfide B. Aluminum ion C. Phosphide D. Phosphate 4. Which of the following statements is not correct? A. Electrons can behave as a wave. B. Anions are formed from non-metals that loss electrons. C. An electron being promoted from ground state to a higher energy level results in excitation. D. Cations can react with non-metals. 5. Which of the following relationships is not true? A. Calcium ion is larger in atomic size than calcium. B. Aluminum has a lower electron affinity than chlorine. C. Cesium has lower ionization energy than sodium. D. Chlorine has a smaller atomic size than sodium. 6. Which of the following has the highest electron affinity? A. I B. Cl C. Br D F 7. Which is the smallest distance? A. 1×10^{-12} Mm B. 100 mm C. 1×10^{6} µm D. 1×10^{3} cm E. None listed Problems. Credit will only be given if you show your work and units. Circle your final answer. All answers should have the correct number of significant figures.

Useful information:1 yard= 0.91 meters1 lb= 454 g1 in = 2.54 cm1 L = 2.113 pints1 gallon=3.78 L

8. (8 points) A child needs to be given an i.v. antibiotic with a concentration of 50 μ g/ μ l. The child weighs 45 pounds, and the antibiotic needs to be given at a concentration of 250 mg/kg of body weight. The drug needs to be delivered over 4.0 hours. How many milliliters per minute should you set the pump on the i.v machine?

9. (8 points) The television chef Paula Dean likes to cook with butter. She uses 1.0 sticks of butter per recipe, and does 3.0 recipes per television show. She does 100.0 shows per year. One stick of butter contains 8 tablespoons of butter, and one tablespoon is 14.79 mL. The density of butter is 56.9 lb/ft³. How many pounds of butter does Paula Dean use in a year of her television show?

10. (6 points) Menthol, an anesthetic and chemical found in peppermint melts at 35°C and boils at 200 °C. In what state is it found at 85°F? A complete answer should include showing all of your work.

11. (6 points) Resting heart rate is 60.00 beats per minute, and the human heart pumps 70.00 mL per minute. How many heartbeats does it take to pump 12.00 pints of blood?

12. (20 points) Fill in the following table for all missing spaces. In spaces where there is a line through that space, you do not need to provide an answer.

Element	Element	#	#	#	Atomic	Atomic	Electron	Valence	
Name	Symbol	Protons	Neutrons	Electrons	Mass	Number	Configuration	Electrons	
					Number				
				18	31	15	$1s^22s^22p^6$		
		20		18	40			8	

Short Answer

13. (2 points each) In the space provide write the number of significant figures for each number.

a. 0.05 b. $0.00020 \ge 10^{-4}$

_____c. 3.000 _____d. $5.2 \ge 10^5$

14. (3 points each) Perform the following calculations and give the appropriate number of significant figures.

(0.003 g x 41.03)/ 0.12 =_____

44.001 g + 0.1 g + 0.125 g =_____

15. (3 points each) In the space provided label each process as a chemical change or physical change.

_____a. Frosting a cake.

_____b. Frying bacon.

_____c. Adding sugar to water.

16. (2 points each) Classify each of the following as heterogeneous or homogeneous mixtures

- _____a. A bag of chips
- _____b. A cup of black coffee
- _____c. A vanilla ice cream cone
 - _____d. A can of oil

-
- -
-
- 55
-
T
 A)
<u> </u>
E
. —
4
-
\sim
 A)

Γ.
• • •
•=
- Ā
<u> </u>
· 1
· •
-

																							Г						-
	18	5	He	Helium 4.003	10	Ne	Neon 20.1797	18	Ar	Argon 39.948	36	Kr	Krypton 83.80	54	Xe	Хепол 131.29	86	Rn	Radon (222)					71	Lu	Lutetium 174.967	103	\mathbf{Lr}	Lawrencium (262)
				17	6	Γ.	Fluorine 18.9984032	17	IJ	Chlorine 35.4527	35	Br	Bromine 79.904	53	Ι	Iodine 126.90447	85	At	Astatine (210)					10	$\mathbf{Y}\mathbf{b}$	Ytterbium 173.04	102	N0	Nobelium (259)
				16	8	0	Oxygen 15.9994	16	S	Sulfur 32.066	34	Se	Selenium 78.96	52	Te	Tellurium 127.60	84	$\mathbf{P_0}$	Polonium (209)					69	Πm	Thulium 168.93421	101	Md	Mendelevium (258)
				15	2	Z	Nitrogen 14.00674	15	Р	Phosphorus 30.973761	33	As	Arsenic 74.92160	51	$\mathbf{S}\mathbf{b}$	Antimony 121.760	83	Bi	Bismuth 208.98038					68	Er	Erbium 167.26	100	$\mathbf{F}\mathbf{m}$	Fermium (257)
				14	9	C	Carbon 12.0107	14	Si	Silicon 28.0855	32	ge	Germanium 72.61	50	\mathbf{Sn}	Tin 118.710	82	$\mathbf{P}\mathbf{b}$	Lead 207.2	114				67	\mathbf{H}_{0}	Holmium 164.93032	66	Es	Einsteinium (252)
e of the Elements				13	5	в	Boron 10.811	13	AI	Aluminum 26.981538	31	Ga	Gallium 69.723	49	In	Indium 114.818	81	II	Thallium 204.3833	113				99	Dy	Dysprosium 162.50	98	Cf	Californium (251)
										12	30	Zn	Zinc 65.39	48	Cd	Cadmium 112.411	80	Hg	Mercury 200.59	112		(277)		65	$\mathbf{T}\mathbf{b}$	Terbium 158.92534	97	Bk	Berkelium (247)
										=	29	Cu	Copper 63.546	47	Ag	Silver 107.8682	79	Чu	Gold 196.96655	111		(272)		64	Gd	Gadolinium 157.25	96	Cm	Curium (247)
										10	28	Ż	Nickel 58.6934	46	Ъd	Palladium 106.42	78	Pt	Platinum 195.078	110		(269)		63	Eu	Europium 151.964	95	Am	Americium (243)
Tab]										6	27	°C	Cobalt 58.933200	45	Rh	Rhodium 102.90550	77	Ir	Iridium 192.217	109	Mt	Mennerum (266)		62	Sm	Samarium 150.36	94	Pu	Plutonium (244)
riodic										8	26	Fe	Iron 55.845	44	Ru	Ruthenium 101.07	76	õ	Osmium 190.23	108	Hs	(265)		61	Pm	Promethium (145)	93	Np	Neptunium (237)
ne Pel										2	25	Mn	Manganese 54.938049	43	Tc	Technetium (98)	75	Re	Rhenium 186.207	107	Bh	(262)		60	Νd	Neodymium 144.24	92	D	Uranium 238.0289
Ì										9	24	Cr	Chromium 51.9961	42	Mo	Molybdenum 95.94	74	M	Tungsten 183.84	106	Sg	Seaborgium (263)		59	\mathbf{Pr}	raseodymium 140.90765	91	Pa	Protactinium 231.03588
										S	23	Ν	Vanadium 50.9415	41	Νb	Niobium 92.90638	73	Ta	Tantalum 180.9479	105	Db	(262)		58	Ce	Cerium F 140.116	90	Тћ	Thorium 232.0381
										4	22	Τi	Titanium 47.867	40	Zr	Zirconium 91.224	72	Ηf	Hafnium 178.49	104	Rf	(261) (261)							
										ŝ	21	Sc	Scandium 44.955910	39	Υ	Yttrium 88.90585	57	La	Lanthanum 138.9055	89	Ac	(227)							
				0	4	Be	Beryllium 9.012182	12	Mg	Magnesium 24.3050	20	Ca	Calcium 40.078	38	Sr	Strontium 87.62	56	Ba	Barium 137.327	88	Ra	Kaduum (226)							
		1	Η	Hydrogen 1.00794	3	Li	Lithium 6.941	11	Na	^{Sodium} 22.989770	19	K	Potassium 39.0983	37	\mathbb{R}^{b}	Rubidium 85.4678	55	C	Cesium 132.90545	87	Fr	Prancium (223)							
						2	-		\mathfrak{c}			4			S			9			7								