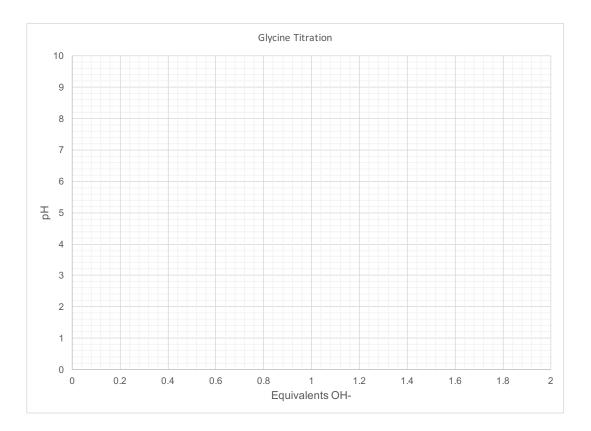

Example Titration Problems

Monoprotic Example

1. Suppose you have a solution of acetic acid (CH₃COOH) with a pKa of 4.75 in its completely protonated form. Complete the following table.

Equivalents OH ⁻ Added	[A-]/[HA]	log ([A-]/[HA])	рН
0.10			
0.20			
0.30			
0.40			
0.50			
0.60			
0.70			
0.80			
0.90			

- 2. Using the data from the above table complete the titration curve on the next page for acetic acid.
- 3. Which form dominates in solution at a pH of 3? Draw its structure.
- 4. Which form dominates in solution at a pH of 6? Draw its structure.

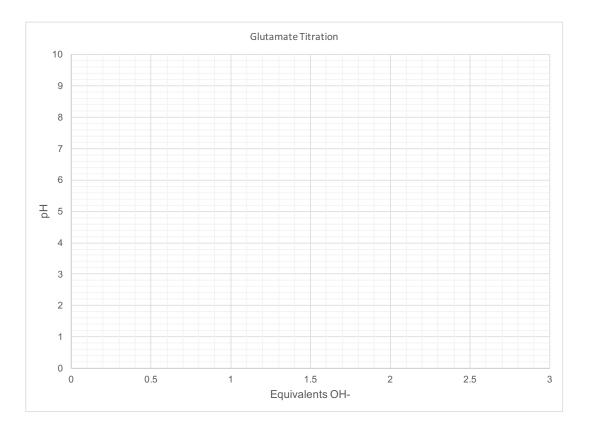


Diprotic Example-Glycine Titration

 Suppose you have a solution of glycine in its completely protonated form. Glycine has a pKa of 3 for the terminal carboxyl group and a pKa of 8.0 for the terminal amino group. Complete the following table.

Equivalents OH ⁻ Added	[A-]/[HA]	log ([A-]/[HA])	рН
0.10			
0.20			
0.30			
0.40			
0.50			
0.60			
0.70			
0.80			
0.90			
1.30			
1.40			
1.50			
1.60			
1.70			
1.80			
1.90			

- 2. Using the data from the above table complete the titration curve on the next page for glycine.
- 3. Which form dominates in solution at a pH of 2? Draw its structure. What is formal charge on the molecule?
- 4. Which form dominates in solution at a pH of 6? Draw its structure.
- 5. Which forms dominates in solution at a pH of 10? Draw its structure. What is the formal charge on the molecule?



Triprotic Example-Glutamate Titration

1. Suppose you have a solution of glutamate in its completely protonated form. Glutamate has a pKa of 3 for the terminal carboxyl group, pKa of 4.1 for the side chain, and a pKa of 8.0 for the terminal amino group. Complete the following table.

Equivalents OH ⁻ Added	[A-]/[HA]	log ([A-]/[HA])	рН
0.10			
0.20			
0.30			
0.40			
0.50			
0.60			
0.70			
0.80			
1.30			
1.40			
1.50			
1.60			
1.70			
1.80			
1.90			
2.30			
2.40			
2.50			
2.60			
2.70			
2.80			
2.90			

- 1. Using the data from the above table, complete the titration curve for glutamate.
- 2. Which form dominates in solution at a pH of 2? Draw its structure. What is formal charge on the molecule?
- 3. Which form dominates in solution at a pH of 6? Draw its structure. What is formal charge on the molecule?
- 4. Which forms dominates in solution at a pH of 10? Draw its structure. What is the formal charge on the molecule?

