Exam 02: Chapters 04 and 05

- Select and solve three of the following problems to the best of your ability. Indicate below which three problems you wish to have graded. **If you do not explicitly mark a problem to be scored, it will not be scored. If you have worked on more than three problems, select only three to be graded. I will not choose for you.**

Choose One

<table>
<thead>
<tr>
<th>Choose One</th>
<th>Grade this one?</th>
<th>Choose Two</th>
<th>Grade this one?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem 01</td>
<td></td>
<td>Problem 03</td>
<td></td>
</tr>
<tr>
<td>Problem 02</td>
<td></td>
<td>Problem 04</td>
<td>Problem 05</td>
</tr>
</tbody>
</table>

- You may use your calculator and the attached formula sheet.
- Read and follow the directions carefully.
- **Solve using the method required by the problem statement.** If you are not explicitly required to use a specific technique, please be sure to show sufficient work so that your method is obvious.
- Show all your work. Work as neatly as you can. If you need scratch paper, blank sheets will be provided for you.
- It is permissible to use your calculator to solve a system of equations directly. If you do, state this explicitly.
- Express your answer as directed by the problem statement, using *three significant digits*. Include the appropriate units.

Your work will be scored according to the following point structure:

- Problem 01: __________________/28
- Problem 02: __________________/28
- Problem 03: __________________/36
- Problem 04: __________________/36
- Problem 05: __________________/36
Problem 01

Replace the force system shown on the pipe assembly on the right with an equivalent resultant force \(R \) and couple moment \(M \) at point \(O \). The force \(\mathbf{F}_3 = (-200\mathbf{i} + 500\mathbf{j} - 300\mathbf{k})\) N. Express both the force and moment using correct cartesian vector notation.

\[
\begin{align*}
R_x &= \sum F_x = F_{3x} = -200\text{N} \\
R_y &= \sum F_y = F_{2y} + F_{3y} = 200 + 500 = 700\text{N} \\
R_z &= \sum F_z = F_{1z} + F_{3z} = -300 - 300 = -600\text{N} \\
\mathbf{M}_1 &= \mathbf{r}_1 \times \mathbf{F}_1 = [2\mathbf{j}] \times [-300\mathbf{k}] = -(600\text{N}\cdot\text{m}) \mathbf{\hat{k}} \\
\mathbf{M}_2 &= \mathbf{r}_2 \times \mathbf{F}_2 = [1.5\mathbf{i} + 3.5\mathbf{j}] \times [200\mathbf{j}] = (300\text{N}\cdot\text{m}) \mathbf{\hat{k}} \\
\mathbf{M}_3 &= \mathbf{r}_3 \times \mathbf{F}_3 = [1.5\mathbf{i} + 2\mathbf{j}] \times [(-200)\mathbf{i} + (500)\mathbf{j} - (300)\mathbf{k}] \\
\mathbf{M}_4 &= -(600\text{N}\cdot\text{m}) \mathbf{\hat{i}} + (450\text{N}\cdot\text{m}) \mathbf{\hat{j}} + [(750\text{N}\cdot\text{m}) + (400\text{N}\cdot\text{m})] \mathbf{\hat{k}} \\
\mathbf{M}_o &= \mathbf{M}_1 + \mathbf{M}_2 + \mathbf{M}_3 + \mathbf{M}_4 \\
\mathbf{R} &= -(200\text{N}) \mathbf{\hat{i}} + (700\text{N}) \mathbf{\hat{j}} - (600\text{N}) \mathbf{\hat{k}} \\
\mathbf{M}_o &= -(1200\text{N}\cdot\text{m}) \mathbf{\hat{i}} + (450\text{N}\cdot\text{m}) \mathbf{\hat{j}} + (1450\text{N}\cdot\text{m}) \mathbf{\hat{k}}
\end{align*}
\]
Problem 02

Replace the force and couple system acting on the frame with a single equivalent resultant force \(\vec{R} \) which lies along line AB. Specify the point of application of force \(\vec{R} \), measured from point A.

\[
\vec{F}_1 = (50 \text{lb}) \left[\sin30^\circ \hat{i} + \cos30^\circ \hat{j} \right]
\]
\[
\vec{F}_2 = (25 \text{lb}) \hat{i} + (43.3 \text{lb}) \hat{j}
\]
\[
\vec{F}_2 = (150 \text{lb}) \left[\frac{4}{5} \hat{i} + \frac{3}{5} \hat{j} \right]
\]
\[
\vec{F}_2 = (120 \text{lb}) \hat{i} + (90 \text{lb}) \hat{j}
\]
\[
R_x = \sum F_x = 25 + 120 = 145 \text{lb}
\]
\[
R_y = \sum F_y = 43.3 + 90 = 133.3 \text{lb}
\]
\[
\vec{R} = (145 \text{lb}) \hat{i} + (133.3 \text{lb}) \hat{j}
\]
\[
\vec{M}_1 = r_1 \times \vec{F}_1 = [-3 \hat{i} - 6 \hat{j}] \times [25 \hat{i} + 43.3 \hat{j}]
\]
\[
\vec{M}_1 = [-129.9 + 150] \hat{k} = (20.1 \text{ ft-lb}) \hat{k}
\]
\[
\vec{M}_2 = r_2 \times \vec{F}_2 = [-2 \hat{j}] \times [120 \hat{i} + 90 \hat{j}] = (240 \text{ ft-lb}) \hat{k}
\]
\[
\vec{M}_A = \vec{M}_1 + \vec{M}_2 + \vec{M}_C = (20.1 + 240 + 500) \hat{k} = (760.1 \text{ ft-lb}) \hat{k}
\]
\[
M_A = yR_y = y(145) = 760.1
\]
\[
y = 5.24 \text{ ft}
\]
\[
\vec{R} = (145 \text{lb}) \hat{i} + (133.3 \text{lb}) \hat{j}, \text{ applied at } y = 5.24 \text{ ft below A}
\]
Problem 03

The rod supports a weight $W = 200$ lb and is pinned at its end A. It is also subjected to a couple moment of 100 lb ft. The spring has an unstretched length $l_0 = 2$ ft and a stiffness $k = 50$ lb/ft.

A. Draw the free body diagram for the system, clearly labeling all forces and moments.

B. Determine the angle θ for equilibrium. This will require solving a trig equation; you may use your calculator (if possible), or you may use Wolfram Alpha (I will provide access).

\[\sum M_A = M_A + Wx - F(2x) = 0 \]
\[M_A + W[(3 \text{ ft}) \cos \theta] - [k\Delta l][2 (3 \text{ ft}) \cos \theta] = 0 \]
\[M_A + W[(3 \text{ ft}) \cos \theta] - [k(6 \text{ ft}) \sin \theta][6(\text{ ft}) \cos \theta] = 0 \]
\[100 \text{ ft} \cdot \text{lb} + (200 \text{ lb})(3 \text{ ft}) \cos \theta - (50 \text{ lb/ft})(36 \text{ ft}^2) \sin \theta \cos \theta = 0 \]
\[100 + 600 \cos \theta - 1800 \sin \theta \cos \theta = 0 \]
\[\theta = 23.2^\circ, 85.2^\circ \ (Wolfram \alpha) \]
Problem 04
The pipe assembly shown is fixed at support A and subjected to 400 N, 500 N, and 600 N forces applied parallel to the x, y, and z axes, respectively.

A. Draw the free body diagram, labeling all forces and reaction moments clearly and completely.

B. Determine the components of the reaction at A.

\[\begin{align*}
\sum F_x &= A_x - F_1 = 0 & A_x &= 400\text{N} \\
\sum F_y &= F_2 - A_y = 0 & A_y &= 500\text{N} \\
\sum F_z &= A_z - F_3 = 0 & A_z &= 600\text{N} \\
\sum M_x &= M_x - F_2(1\text{m}) = 0 & M_x &= 1100\text{N}\cdot\text{m} \\
\sum M_y &= M_y - F_1(0.75\text{m}) = 0 & M_y &= 750\text{N}\cdot\text{m} \\
\sum M_z &= M_z = 0 & M_z &= 0 \\
\end{align*} \]

\[\vec{A} = (400\text{N}) \hat{i} - (500\text{N}) \hat{j} + (600\text{N}) \hat{k} \]

\[\vec{M}_A = (1100\text{N}\cdot\text{m}) \hat{i} + (750\text{N}\cdot\text{m}) \hat{j} \]
Problem 05
The T-bar shown is supported by a pin at A and cable BC. The cylinder has a mass of 40 kg.

A) Draw the free body diagram for the T-bar, labeling all forces and reaction moments clearly and completely.

B) Determine the components of the reaction at A.

\[
\mathbf{T} = T \left[\frac{-3 \mathbf{i} - 1.5 \mathbf{j} + \mathbf{k}}{\sqrt{(-3)^2 + (-1.5)^2 + 1^2}} \right]
\]

\[
\mathbf{T} = T \left[-(0.857) \mathbf{i} - (0.429) \mathbf{j} + (0.289) \mathbf{k} \right]
\]

\[
\sum F_x = A_x + T_z = A_x - 0.857T = 0
\]

\[
\sum F_y = A_y + T_y = A_y - 0.429T = 0
\]

\[
\sum F_z = A_z + T_z - W = A_z + 0.289T - (40\text{kg})(9.81\text{m/s}^2) = 0
\]

\[
\sum M_x = M_x - T_z(1m) - W(1m) = 0
\]

\[
M_x = T(0.289)(1m) + (40\text{kg})(9.81\text{m/s}^2)(1m)
\]

\[
\sum M_y = W(3m) - T_z(3m) = 0
\]

\[
T_z = 0.289T = W = (40\text{kg})(9.81\text{m/s}^2)
\]

\[
\sum M_z = M_z - T_x(3m) = 0
\]

\[
M_z = T(0.857)(3m)
\]

\[T = 1373\text{N}\]

\[
\mathbf{A} = (1177\text{N}) \mathbf{i} - (588.6\text{N}) \mathbf{j} + (0\text{N}) \mathbf{k}
\]

\[
\mathbf{M}_A = (784.8\text{N}\cdot\text{m}) \mathbf{i} + (3532\text{N}\cdot\text{m}) \mathbf{k}
\]