Examine the solved problem below. There are five errors. Your task is to locate and identify any mistakes, then correct them and calculate the proper result. If the same error occurs more than once, only count it as a single error, even if you have to correct it in more than one instance.

Each correctly identified error is worth 3 points, and the re-calculated results are worth 5 points. You must save your work in pdf format and submit via the Quiz 14 Assignment in the Chapter 18 folder of the in the Quizzes folder of the Online Classroom in Blackboard. Please do not use any other file format than pdf.

The drum has a mass $m=40 \mathrm{~kg}$ and a radius of gyration about the pin at O of $k_{O}=0.20 \mathrm{~m}$. The suspended block B has a mass $m_{B}=10 \mathrm{~kg}$. It is released from rest and allowed to fall $y_{1}=2.5 \mathrm{~m}$ without applying the brake $A C D$. Determine the speed v_{B} of the block at this instant.
If the coefficient of kinetic friction at the brake pad C is $\mu_{k}=0.45$, determine the force P that must be applied at the brake handle which will then stop the block after it descends another $y_{2}=2.5 \mathrm{~m}$. Neglect the thickness of the handle.
A) Conserve the energy of the drum + block system over the first $y_{1}=2.5 \mathrm{~m}$ displacement:

$$
\begin{aligned}
& T_{0}+V_{0}=T_{1}+V_{1} \\
& 0+0=\frac{1}{2} m_{B} v_{B}^{2}+\frac{1}{2} I_{O} \omega_{1}^{2}-m_{B} g y_{1} \\
& \frac{1}{2} m_{B} r_{O}^{2} \omega_{1}^{2}+\frac{1}{2}\left(\frac{1}{2} m k_{O}^{2}\right) \omega_{1}^{2}=m_{B} g y_{1} \\
& \left(\frac{1}{2} m_{B} r_{O}^{2}+\frac{1}{4} m k_{O}^{2}\right) \omega_{1}^{2}=m_{B} g y_{1}
\end{aligned}
$$

$$
\begin{array}{r}
{\left[\frac{1}{2}(10 \mathrm{~kg})(0.25 \mathrm{~m})^{2}+\frac{1}{4}(40 \mathrm{~kg})(0.20 \mathrm{~m})^{2}\right] \omega_{1}^{2}} \\
=(10 \mathrm{~kg})\left(9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)(2.5 \mathrm{~m}) \\
\omega_{1}=8.68 \frac{\mathrm{rad}}{\mathrm{~s}} \\
v_{B}=\omega_{1} r_{o}=\left(8.68 \frac{\mathrm{rad}}{\mathrm{~s}}\right)(0.25 \mathrm{~m})=2.17 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{array}
$$

E) Solve the static equilibrium of the brake lever for the applied force P :

$$
\begin{aligned}
& \sum M_{A}=P r_{A D}-N_{C} r_{A C}=0 \\
& P=\left(\frac{r_{A C}}{r_{A D}}\right) N=\left(\frac{r_{A C}}{r_{A D}}\right) \frac{f_{C}}{\mu_{k}}
\end{aligned}
$$

$$
\begin{aligned}
P & =\left(\frac{0.5 \mathrm{~m}}{1.25 \mathrm{~m}}\right) \frac{784 \mathrm{~N}}{0.45} \\
P & =697 \mathrm{~N}
\end{aligned}
$$

