QUIZ: USING NUMBERS

1.	When writing a number in scier A) 0	itific notation, pla B) 1	ace how many	digits C)	to the left of the decimal? 2 D) Any n	iumber.
2.	 When a number is written in so A) a number > 1 has a positive B) a number < 1 has a positive C) a number > 1 has a negative 	ientific notation, /e exponent. /e exponent. ive exponent.		D) E)	a number < one has an expo smaller than one. None of these answers are c	nent tha orrect!	at is also
3.	What does a negative exponentA) The number is negative.B) The number is larger thanC) The number is less than o	t in scientific not one. ne.	tation indicate?	D) E)	The number is positive and n ously. Nothing. It literally does not	egative mean ar	simutane- nything.
4.	$\begin{array}{l} \mbox{Rewrite using scientific notatio}\\ \mbox{A}) & 5.67 x 10^7 \ (W/m^2 K^4)\\ \mbox{B}) & 5.67 x 10^8 \ (W/m^2 K^4) \end{array}$	n: the Stefan-Bo	oltzman consta	nt: C C) D)	0.0000000567 (W/m ² ·K ⁴) 5.67x10 ⁻⁷ (W/m ² ·K ⁴) 5.67x10 ⁻⁸ (W/m ² ·K ⁴)		
5.	$\begin{array}{l} \mbox{Rewrite using scientific notation: the Coulomb force constant} \\ \mbox{A}) & 8.988 x 10^6 \ (N \cdot m^2/C^2) \\ \mbox{B}) & 8.988 x 10^9 \ (N \cdot m^2/C^2) \end{array}$			8,9 C) D)	988,000,000 (N·m²/C²) 8.988x10⁻⁶ (N·m²/C²) 8.988x10⁻⁰ (N·m²/C²)		
6.	Multiply: $(3.8 \times 10^{-4}) \cdot (5.2 \times 10^{10})$ A) 1.98×10^{6} C) 1.98×10^{14} B) 1.98×10^{7} D) 7.56×10^{-6}			E) 7.31x10 ⁻¹⁴			
7.	Divide: $(4.6 \times 10^{-5}) \div (1.7 \times 10^{4})$ A) 2.71x10 ⁻⁹ B) 2	.71x10 ⁻¹	C) 7.82x1	0 ⁻⁹	D) 7.82x10 ⁻¹	E)	7.82x10 ⁹
8.	There are a million (10 ⁶) books or her to read the whole library	in the UCA libra ?	ry. If a person	read	s three books a week, how lor	g would	l it take him

- A) About 64 days, which could be done over summer vacation.
- B) About 64 months. A little over 5 years. This is about how much reading a typical undergraduate does before graduation.
- C) About 64 years, or a lifetime. You would not get anything else done, but you would have read the books!
- D) About 6400 years, which would be impossible.
- 9. A 12oz bag of chocolate chips typically makes about 4 dozen 2¹/₂-inch cookies. *About* how many chips are in the bag?
 - A) 5,000 chipsC) 50 chipsE) None. I ate them all beforeB) 500 chipsD) 5 chipsI could make any cookies.
- 10. True or false: Using units of inches is more precise than using units of centimeters to make a measurement.
- 11. True or false: Using units of inches is more accurate than using units of centimeters.
- 12. Precision relates to
 - A) the measuring instrument. The smaller the unit of measurement, the more precise the tool is.
 - B) the measurer. The more carefully a person uses the tool, the more precise the measurement.
- 13. Accuracy relates to
 - A) the measuring instrument. The smaller the unit of measurement, the more accurate the tool is.
 - B) the measurer. The more carefully a person uses the tool, the more accurate the measurement.
- 14. True or false: Replacing a measuring tool with a more precise one will automatically improve the accuracy of your measurements.
- 15. Your estimates in centimeters may be less accurate than your estimates in inches because
 - A) inches are simply a much more accurate system of units to use than centimeters.
 - B) estimates are inherently inconsistent. You can't ever expect to be able to estimate anything accurately.
 - C) you are more used to using inches, and therefore have a better idea of the size of the unit.
- 16. You estimated the length of your chapstick to be 6cm. When you measured it, you found it to be 6.5cm long. What is the percent error in your estimate?
 - A) 0.077% B) 0.083% C) 7.7% D) 8.3%