Quiz: Gas Laws

On the right are graphs of data collected using the same methods as you used in lab. Use these data to answer questions.

1. Atmospheric pressure is closest to
A) 0 kPa .
B) 20 kPa .
C) 26 kPa .
D) 100 kPa .
E) 101.5 kPa .
2. For the Gay-Lussac experiment, pressure was measured
A) as temperature increased while volume was held constant.
B) as volume increased while temperature was held constant.
3. For the Gay-Lussac experiment, why does the release valve on the stopper need to be closed?
A) It doesn't. The valve needs to remain open the whole time.
B) If you leave the valve open, the tube is not isolated from the atmosphere, and the pressure will be the same as the surrounding atmosphere.
4. According to the Gay-Lussac data, the relationship between pressure and temperature is
A) quadratic.
B) exponential.
C) inversely proportional.
D) directly proportional (linear).
E) Trick question! The data are random, and there is no relationship between pressure and temperature!
5. The equation which best fits the Gay-Lussac data shown is
A) $p=(0.305) T+95.4$
B) $p=(95.4) T+0.305$
C) $p=[(0.305) / T]+95.4$
D) $p=[(95.4) / T]+0.305$
E) Trick question! There is no equation to describe the graph shown. The data are clearly random.
6. For the Boyle experiment, pressure was measured
A) as volume decreased while temperature was held constant.
B) as temperature decreased while volume was held constant.
7. According to the Boyle data, the relationship between pressure and volume is
A) quadratic.
B) exponential.
C) inversely proportional.
D) directly proportional (linear).
E) Trick question! The data are random, and there is no relationship between pressure and volume!
8. The equation which best fits the Boyle data is
A) $\left.p=(1712) V^{(-0.94}\right)$
B) $\left.\mathrm{p}=(1712) \mathrm{V}^{(0.94}\right)$
C) $p=(0.94) V^{(1712)}$
D) $\mathrm{p}=(0.94) \mathrm{V}+1712$
E) $\mathrm{p}=(1712) \mathrm{V}+0.94$
9. According to Charles' Law, for a gas held at constant pressure
A) an increase in temperature causes an increase in volume.
B) an increase in temperature causes a decrease in volume.
C) a decrease in temperature cause an increase in volume.
D) changing the temperature causes no change in volume.
E) Trick question! There is no way to maintain a gas at
 constant pressure.
10. When a a firefighter injects a fine fog of water droplets into a room of a burning building,
A) the smoke and hot gases are unaffected; the water droplets are too small to put out the fire.
B) the smoke and gases get even hotter, which seems counter-intuitive, but it's what the firefighters want.
C) the smoke and hot gases are rapidly cooled, thereby reducing their temperature, volume and, pressure.
