QUIZ: EVALUATING YOUR ENERGY USE

- 1. According the the US Department of Energy, total energy consumption for the country in the year 2009 was
 - A) 94,578 trillion BTU.

C) 84 million calories.

B) 300 million BTU.

- D) 150,000 calories.
- 2. By DOE estimates, you used 350 billion Joules of energy in 2009. Really? That much?
 - A) Yes, and probably more. The number is an estimate, and does not include the food energy (how could the government know how much you ate in 2009?).
 - B) No. The number includes commercial and industrial energy use. You used *some* of that energy indirectly, but your personal use did not total 350 billion Joules.
 - C) Yes, exactly that much. The government has discovered your secret cache of 150,000 Big Mac sandwiches, and has included it in their calculations.

DIRECT USE: NATURAL GAS

Монтн	July	TOTAL CONSUMPTION (CCF)	total = 13	DAILY USE (MJ/DAY)	energy = 45.5
BILLING PERIOD	30	TOTAL CONSUMPTION (MJ)	$MJ = total \times 105$	Your Share (MJ/day)	gas = 15.2
TOTAL BILL (\$)	29.10	COST PER MJ (\$/MJ)	cost = bill÷MJ	DAILY COST (\$)	daily = 0.32

- 3. According to the above data, what is the cost per MJ of the natural gas?
 - A) \$20.00 per MJ
- B) \$2.00 per MJ
- C) \$0.20 per MJ
- D) \$0.02 per MJ
- 4. If this household has a gas furnace and hot water heater, what would you expect the trend in energy use to be?
 - A) Probably pretty constant all year long. No real spikes or dips in use.
 - B) Gas consumption will rise in the autumn and winter when the furnace is in use, and decrease in warmer spring and summer months.

DIRECT USE: ELECTRICITY

Монтн	July	Total Consumption (kWh)	total = 1700	DAILY USE (MJ/DAY)	energy = 204
BILLING PERIOD	30	TOTAL CONSUMPTION (MJ)	MJ = 6120	Your Share (MJ/day)	electricity = energy÷3
TOTAL BILL (\$)	145.94	Cost per MJ (\$/MJ)	cost = 0.02	DAILY COST (\$)	$daily = electricity \times cost$

- 5. What is the daily cost of electricity use?
 - A) \$0.02

B) \$0.57

C) \$1.62

- D) \$6.80
- 6. If you are estimating the energy use for an entire year, does this figure for electricity use need to be revised up or down?
 - A) 1700kWh per month is probably about average, no matter what time of year.
 - B) You probably use more than 1700kWh per month in the winter.
 - C) You probably use less electricity in the winter, when you are not running your air conditioner.

DIRECT USE: GASOLINE

AVERAGE DAILY MILES	10	DAILY CONSUMPTION (GAL)	gallons = miles÷mpg	# OF COMMUTERS IN CAR	people = 1
AVERAGE GAS MILEAGE (MPG)	30	DAILY CONSUMPTION (MJ/DAY)	MJ = 39.7	Your Share (MJ/day)	gasoline = 39.7
GAS PRICE (\$/GAL	3.00	COST PER MJ (\$/ MJ)	cost = 0.075	DAILY COST (\$)	$daily = gallons \times price$

- 7. How many gallons of gas per day does this commuter use?
 - A) 0.10 gal
- B) 0.30 gal
- C) 3 gal

D) 10 gal

- 8. How much is the cost of gasoline per day for this commuter?
 - A) \$0.75

B) \$1.00

C) \$3.00

D) \$10.00

DIRECT USE: FOOD

Your Daily Calories	calories = 2000	MONTHLY FOOD EXPENDITURE (\$)	food= 140
YOUR DAILY ENERGY (J)	$joules = calories \times 4184$	DAILY COST OF FOOD (\$)	daily = food÷30
DAILY CONSUMPTION (MJ)	$MJ = joules \div (1 \times 10^6)$	Cost per MJ (\$/MJ)	$cost = daily \div MJ$

- 9. What is the daily consumption in MJ of energy?
 - A) 8,368,000 MJ
- B) 4184 MJ
- C) 2000 MJ
- D) 8.368 MJ

- 10. How much does the food cost per MJ of energy?
 - A) \$0.02

B) \$0.06

C) \$0.56

D) \$0.75

- 11. Which source of energy is most expensive per MJ?
 - A) Natural gas.
- B) Electricity.
- C) Gasoline.
- D) Food.

- 12. Which energy source is most expensive in actual dollars spent per day?
 - A) Natural gas.
- B) Electricity.
- C) Gasoline.
- D) Food.
- 13. True or false: The numbers on the above tables are totally unrealistic. No one would ever use that much energy.