LAB QUIZ: ENERGY AND MOMENTUM

Answer each of the following questions using your clicker. If there are no multiple choices, the question is true/false or numeric. Please do not mark on the quiz paper. Each question is worth three points.

DROP HEIGHT BOUNCE h _A (cm) h _D (e Height (cm)	IGHT DROP HEIGHT) h _A (cm)	BOUNCE HEIGHT h _D (cm)	The data on the left were collected using the same method as you used in lab. The ball dropped was measured, and its mass is $m = 50$ grams. Remember that the acceleration due to gravity is 980 cm/s^2 .
20 1	15		78	1. When the ball is held 80 cm above the table (point
40 2	29 :		90	A), what is its potential energy (let the tabletop be $h=0$)?
60 4	14	140	105	A) $2.39 \times 10^{6} \text{ g cm}^{2}/\text{s}^{2}$ B) $2.93 \times 10^{6} \text{ g cm}^{2}/\text{s}^{2}$
80 6	62		121	C) $3.04x10^{\circ} \text{gcm}^2/\text{s}^2$ D) $3.92x10^{\circ} \text{gcm}^2/\text{s}^2$ E) $4.03x10^{\circ} \text{gcm}^2/\text{s}^2$ nces (point C), how much kinetic energy does it have? $10^{\circ} \text{gcm}^2/\text{s}^2$ D) $3.92x10^{\circ} \text{gcm}^2/\text{s}^2$ $10^{\circ} \text{gcm}^2/\text{s}^2$ E) $4.03x10^{\circ} \text{gcm}^2/\text{s}^2$ hall is released from rest from a height of 140 cm above the floor, kinetic energy does it have at the instant just before it strikes the nt B)? $10^{\circ} \text{gcm}^2/\text{s}^2$ D) $6.68x10^{\circ} \text{gcm}^2/\text{s}^2$ $10^{\circ} \text{gcm}^2/\text{s}^2$ E) $6.86x10^{\circ} \text{gcm}^2/\text{s}^2$ released from rest from 140 cm. What is the momentum of the ball nt just after it collides with the floor (point C)? 10^{4}gcm/s D) $2.72x10^{4} \text{gcm/s}$ 10^{4}gcm/s E) $6.22x10^{4} \text{gcm/s}$ forepare a graph of bounce height vs drop height, the points for the 40 cm and 120 cm are <i>exactly</i> on your best-fit line. What is the s line? D) 0.45 E) 0.35 ar best prediction for the bounce height if the ball is released from height of 110 cm above the floor? D) 74 cm E) 84 cm
A hA Drop height B C	80 62		ter it bounces (pc) 2.39×10^{6} gcn) 2.93×10^{6} gcn) 3.04×10^{6} gcn hen the ball is re w much kinetic e pund (point B)?) 1.55×10^{6} gcn) 5.15×10^{6} gcn) 5.51×10^{6} gcn e ball is released the instant just a) 1.55×10^{4} gcn) 2.27×10^{4} gcn) 2.62×10^{4} gcn hen you prepare lease at 40 cm a ppe of this line?) 0.76) 0.65) 0.55 hat is your best p st from a height o) 44 cm) 54 cm ue or false: As the	

8. True or false: As the ball falls from its release height (from A to B, just before it strikes the ground), it gains energy.

- 9. True or false: As the ball strikes the earth, the momentum of the system (ball + earth) is conserved.
- 10. True or false: Since you cannot feel the Earth's recoil velocity, it is safe to say that the golf ball transfers exactly zero momentum to the Earth.