Chapter 01

What is
Science?

So, what is

A) A search for order and explanation of our physical surroundings.
B) A method of gathering, categorizing, analyzing, and using information to explain the physical universe.
C) A static collection of unchanging facts.

science?

D) A rigid set of unchanging rules.
E) A and B, but not C and D.

Section 1.1

Objects and Properties

Objects: Concrete vs Abstract

- Is it a thing or an idea? An object is a thing.
- A thing is made of atoms; a thing actually exists (whether or not you personally can make it or touch it or see it is not actually relevant here)
- An idea is an abstraction; it may represent and actual object without being the object, or it may just be a thought without physical reality

Properties: Describe and Define

What am I thinking of???

- "Qualities or attributes that, taken together, are usually peculiar to an object."
- Play 20 Questions: Animal, vegetable, or mineral? Is it bigger than a breadbox?
- Start with the most general, move towards the specific.
- What kind of information do you want?

Properties: Describe and Define

- Animal, vegetable, or mineral?
\checkmark Animal
- Is it bigger than a tabletop?
\checkmark Fits on a table
- Is it alive?
\checkmark Yes
- How many legs does it have?
\checkmark Twelve
- How many questions does it take to reach the specific conclusion: A basket of three chocolate labradoodle puppies?

Section 1.2

LE PLUS GRAND FILM DE TOUTE L'HISTOIRE DU CINEMA!

True or False:

Ben-Hur is the greatest movie of all time!

What is measurable? What really can't be objectively measured?

- You can't objectively measure or quantify something like "What's the best movie of all time?"
- You can objectively measure or quantify something like, "What movie has won the most Academy Awards?"
- The fact that Ben-Hur, Titanic, and LOTR: Return of the King each won 11 Oscars does not make them the greatest films of all time

Pro Tip: Units Matter!

- In general, measurements need units
- Question: How long was Titanic?
- Answer: 195 or maybe 3.25 ; both 882.75 and 269.06 could be correct

Section 1.3

Measurement Systems

IMPERIALVSMETRIC
A Cheat Sheet for Expats in the USA

USA, Liberia and Myanmar are the only 3 countries that still use the imperial system, also known as US Standard. The rest of the world has made the switch to the metric system.

Referent Refers

 to What?- Exactly
- Everyone has to agree on the same referent, or a measurement is completely meaningless
- It doesn't have to be hightech (the pyramids were not, in fact, built by aliens)

The unit of length known as the foot is derived from

A) the actual length of a typical human foot.
B) the average length of a human stride.
C) the distance between your feet if you stand with them centered over your hipbones.
D) the standard length of a roll of paper (foolscap, used in the late Renaissance).

English (Imperial) System of Units

- Developed over centuries
- Convenient (but inconsistent) human body referents

Metric System (Système Internationale, or SI)

- Decimals! So easy, even $16^{\text {th }}$ century mathematicians can use them!
- Like everything, developed gradually over time
- Thanks for the units, now off with your head!*

Section 1.4

Standard Units

True or false:

The unit of force (the
Newton) is a fundamental unit.

Fundamental vs Derived Units

- Fundamental Units: length, mass, time, electric charge
- Derived Units: velocity, force, energy, current, voltage
- 1 meter $=39.4$ inches $=3.28$ feet

$$
\begin{aligned}
\text { Length } & \cdot \text { Area }=1 x_{w}=\mathrm{L}^{2}=\mathrm{m}^{2} \\
& \cdot \text { Volume }=\mid x_{w} \times d=\mathrm{L}^{3}=\mathrm{m}^{3}
\end{aligned}
$$

- 1 kilogram $=2.2$ pounds

Mass

- This is a pretty poor equivalence!
- Mass (kg) \neq weight (lbs)

An astronaut on Earth weighs A) the same mass, but 170 lbs, making his mass

 77kg. On the moon, he hasB) the same mass and the same weight.
C) a different mass, but the same weight.
D) a different mass and a different weight.

Time

- How long is 1 metric second?
- Trick question! A second is a second is a second
- 1 second $=$ the duration of 9,192,631,770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium 133 atom

Scale the Unit to the

 Measurement- What's the distance from here to Little Rock?
- Why not express that in feet? Inches?
- Imperial conversions are hard! (Metric is easy!)

Learn a Few Easy Prefixes

1 METER =
1,000,000,000 NANOMETERS

1 m

1 MILLIMETER $=$ 1,000,000 NANOMETERS
1mm

- nano $=0.000000001=10^{-9}$
- milli $=1 / 1000=0.001=10^{-3}$
- centi $=1 / 100=0.02=10^{-2}$
- deci $=1 / 10=0.1=10^{-1}$

1 MICROMETER = 1,000 NANOMETERS
1 $\mu \mathrm{m}$

1 NANOMETER = 10^{-9} METERS

1nm

- kilo $=$ thousand $=1000=10^{3}$
- mega $=$ million $=1,000,000=10^{6}$
- giga $=$ billion $=1,000,000,000=10^{9}$
- tera $=$ trillion $=10^{12}$

You want to measure the length and width of a

 floor tile. What units would be most appropriate?

1 METER =
$1,000,000,000$ NANOMETERS
1m

1 MILLIMETER $=$ $1,000,000$ NANOMETERS
1mm
A) nanometers $=10^{-9} \mathrm{~m}$
B) centimeters $=10^{-2} \mathrm{~m}$
C) kilometers $=10^{3} \mathrm{~m}$

1 MICROMETER $=$ 1,000 NANOMETERS
$\mathbf{1 \mu m}$
D) kilograms $=10^{3} \mathrm{~g}$
E) megabytes $=10^{6}$ bytes
F) gigabytes $=10^{9}$ bytes

Section 1.6

Understanding From

Measurements

And Now I Bring You...the Weather

- How do you make sense of all those numbers!?!?!
- Units: temperature in ${ }^{\circ} \mathrm{F}$, barometric pressure in mb (millibars), etc.
- Context: your experience informs how you interpret the numbers
- A collection of information: might be qualitative or quantitative
- One piece of data is a snapshot; you need multiples to extract meaning
- Cross-sectional: same snapshot at the same time for a large number of subjects
- Longitudinal: same snapshot of the same subjects, repeated over a period of time

Data

TABLE 2. Doctorates aviarded, by major feld of study: $1995-2004$									
Field	1995	1996	1997	1998	1999	2000	2001	2002	2003
All felds	41,750	42,439	42,541	42,647	41,092	41,365	40,824	39,989	40,770

- The first rule of generalizations is don't overgeneralize

Ratios and

 Generalizations- A ratio (fraction) is just a
comparison: how does A compare to B ?
- Looking at many instances, making the same comparison, lets you start to extract the general relationship of trend

Circle	Radius (px)	Circumference (px)	ratio: c/r (unitless!)
0	10	63	$63 / 10=6.30$
0	20	126	$126 / 20=6.30$
	40	251	$251 / 40=6.28$
	80	503	$503 / 80=6.29$
	160	1005	$1005 / 160=6.28$

Predict the circumference of a circle with a radius of 60 px . Round (up or down) to the nearest integer.

Circle	Radius $(p x)$	Circumference $(p x)$	ratio: \mathbf{c} / r (unitless!)
0	10	63	$63 / 10=6.30$
	20	126	$126 / 20=6.30$
	40	251	$251 / 40=6.28$
	160	503	$503 / 80=6.29$

If the ratio c / r is constant, then $\mathrm{c}=($ ratio $) \times$ r.
What value do you want to use for the ratio?
Looks to me like the average shown here is 6.29...

Why Babies Need Bundling

- Why are babies always wrapped up in blankets, even when you think it's pretty warm?
- Surface to volume ratio: example in textbook
- Double the length of the side, you get $4 \times$ the area and $8 \times$ the volume!
- Triple the length of the side, and you get $9 \times$ the area and $27 \times$ the volume!

Density: How Much Mass is Crammed Into That Cube?

$$
\rho=\frac{m}{V}
$$

- density $=$ mass $/$ volume
- Not everything has the same density
- Keep it simple: assume the matter is all equally distributed

Calculate the density of that cube of grapefruit in g/cm 3 . Answer numerically with 3 decimal places.

$$
\rho=\frac{m}{V}
$$

mass: $m=7.82 \mathrm{~g}$
length: $l=2 \mathrm{~cm}$ volume: $V=l^{3}$

Inverse-Square Relationship

- This shows up all over physics; we will see it at least 3 or 4 times in different contexts
- In words: x and y are related. If you increase x, y gets smaller (that's the inverse part)
- However, y gets smaller faster than x gets bigger (that's the square part, and now you need to see this with some numbers to make it make sense!)

What happens if you decrease the distance from r to $1 / 2 r$?

A) Half the distance, $1 / 2$ the force.
B) Half the distance, $1 / 4$ the force.
C) Half the distance, $2 \times$ the force.
D) Half the distance, $4 \times$ the force.
E) Trick question; changing the distance has no effect on the force!

Section 1.7

The Nature of Science

Everyone is

a Scientist

- "I don't knowe, but I'm trying to find out, ok?"
- Science itself isn't hard; it's the discard that's difficult
- Everyone needs to be a better scientist

The Scientific Method

"Any sufficiently advanced technology is indistinguishable from magic."
Arthur C. Clarke

- Observe
- Hypothesize
- Predict
- Test
- Modify
- Repeat
- Repeat
- Repeat
- Repeat
- Hypothesis: best first guess; have a stab at explaining something, but the key word is testable. A scientific hypothesis must be testable.
- Model: tool used to visualize an hypothesis or theory. The better the model, the more it can account for.
- Theory: an explanation which has been testedrepeatedly and over timeand never been found to be false. Explains why it happens.
- Law: describes an important relationship that is observed in nature to occur consistently time after time. Describes what happens.

The Words Mean Something

sciencerational data hypotional fin emanation mean cientif applied ${ }^{2}$ SOl hypothesise methodexplanation pro on
measurementknowledge $d_{a t_{a}}$ studydatalaboratoryprediction experiment laboratory logic

Cats born under the sign of Virgo

A) Fun fact! are more intelligent and analytical than other cats.
B) Testable hypothesis!
C) Scientific theory.

"WHO RESSVED WHO?"
August. 22 - September. 23

Symbol: The Virgin
Planet: Mercury
Element: Earth
Gemstone: Sapphire
Color: Dark blue and gray

Contrary to popular opinion, the Earth is not an oblate spheroid, but a flat disk.

A) Fun fact!
B) Testable hypothesis!
C) Scientific theory.
D) Old wives' tale:
E) So obvious it doesn't even need explaining!

Pseudoscience, or Please Don't Get Me Started

7 Ways to Identify Pseudoscience

1. The use of psychobabble - words that sound scientific and professional but are used incorrectly, or in a misleading manner.
2. A substantial reliance on anecdotal evidence.
3. Extraordinary claims in the absence of extraordinary evidence.
4. Claims which cannot be proven false.
5. Claims that counter established scientific fact.
6. Absence of adequate peer review.
7. Claims that are repeated despite being refuted.

- Contrary to what you might see presented by the media, there are not "two sides to every story."
- Peer-review exists for a reason; it is not a perfect tool, but it works.
- Science works because we're all in on it; sometimes it doesn't work as fast as you want, but <insert historical context here>

Which of the following is an example of pseudoscience which has been refuted by the scientifically established peer-review process?

Pseudoscience: All the cool stuff schools don't teach.

Iike Psychic albino sasquatches

In space
A) Astrology
B) Young-Earth creationism
C) Vaccine-induced autism
D) Climate change denial
E) All of the above

