Quiz 07: Collisions

Answer the questions using your clicker. If there are no multiple choices, the question is true/false. Use the T and F keys to respond. Please do not mark on this guiz paper. Each guestion is worth 3 points.

		III (Kg)	m (kg)	L (III)	$O_1()$	$\Theta_2()$	$\Theta_3()$			
1.	The data on the right are for the ballistic pendulum. Use the average angle to determine the height to which the pendulum rises after the collision.	0.0075	0.08	0.204	19	19	18			
	A) 0.0104m B) 0.0107m C)	0.0111m		D) 0.01	15m	E)	0.0119m			
2.	Find the speed v_1 of the ball+block just after the collision A) 0.431 m/s B) 0.452 m/s C)	n. 0.458m/s	3	D) 0.483 m/s		E)	0.499 m/s			
3.	The average velocity $\mathbf{v_o}$ of the ball just before the collision A , 5.27 m/s B , 5.34 m/s C)	on is 5.40 m/s		D) 5.53	m/s	E)	5.64 m/s			
4.	 When the spring is released to launch the ball, A) kinetic energy of the ball is converted to potential energy of the spring. B) potential energy of the spring is converted to kinetic energy of the ball. C) no energy is converted either way. D) the ball gains more energy than the spring releases. 									
5.	When the ball collides with the block,A) momentum is conserved, energy is conserved.	C	c) mome	entum is c	onserved	, energy i	s lost.			

- momentum is conserved, energy is conserved. A)
- B) momentum is lost, energy is conserved.

6.

7.

8.

9.

10.

The data shown are for the **elastic** collision on the air track. Both carts have been weighed with the **5cm** flags attached Both

n carts have been weighed with the 5cm hags attached.				(kg)	t1 (s)				t ₂ (s)			
What is the momentum of cart 1 before the collisio						(m/s)	(kg)	(m/s)				
A) B)	0.0507 kg·m/s 0.0524 kg·m/s	C) 0.0556 kg·1 D) 0.0578 kg·1		;∙m/s ;∙m/s	0.150	0.143	0	0.150	0	0.161		
What is the kinetic energy of cart 1 before the collision?A) 0.0069 JB) 0.0086 JC) 0.0092 JD) 0.0103 JE) 0.012												
What is the momentum of cart 2 after the collision?												
A) B)	0.0457 kg·m/s 0.0466 kg·m/s	C) 0.0485 kg·m/s D) 0.0499 kg·m/s					E) 0.0510 kg·m/s					
What percent of the initial kinetic energy is lost?												
A)	0%	B) 11%		C)	16%		D) 19%		E)	22%		
If the collision is perfectly elastic , how much kinetic energy <i>should</i> be lost during the collision?												
A)	0%	B) 11%		C)	16%		D) 19%		E)	22%		

D) momentum is lost, energy is lost.

11. For the **perfectly inelastic** collision, if $m_1 = m_2$, you would predict what loss of KE? A) 0% B) 25% C) 50% D) 75% E) 100%

12. For the **perfectly inelastic** collision, an observation that $t_2 < t_1$ would need to be immediately double-checked, because this should not be possible: TRUE