Chapter 21: Electric Potential

Section 21.1: Electric Potential Energy and Electric Potential

What Is Potential Energy Anyway?

- Recall that gravitational potential energy $U=m g h$ comes directly out of the definition of work
- We justify the change in vocabulary by noting that gravity is a conservative force!
- Guess what? The Coulomb force is a conservative force as well!

Work Done On One Charge By Another Charge

- Work = force x distance
- Let's get math-y here: $d W=F \cdot d r$, where $d W$ is the incremental amount of work done over an infinitesimal distance $d r$
- Wave the magic calculus wand (integrate over distance interval from r_{i} to r_{f})

Potential Energy Function

- $\quad U=k \frac{q_{1} q_{2}}{r}$
- Inverse means large separation, small potential (which is totally not like $U=m g h$, but totally just like $U=-G \frac{m M}{r}$)
- Think about it this way: U represents how much work must be done on one charge to remove it
from wherever it is to an infinite distance away from the other one
- If the charges are like, the force and displacement are in the same direction: positive work (positive potential)
- If the charges are opposite, force and displacement are opposite direction: negative work (negative potential)

Potential vs Potential Energy

- Electric potential \neq electric potential energy
- \quad Potential = (electric PE)/charge, or work/charge
- Why? Well, why not? Turns out to be a genius idea
- Removes the test charge from consideration, leaves only the fixed distribution

Voltage Is a Scalar

- Energy (in general) is a scalar property
- Electrical potential energy is not an exception
- Potential = energy/charge = Joules/Coulomb = Volts (just call it voltage!)
- $\quad V=\frac{U}{q}$ or $U=q V$

Section 21.2: Sources of Electric Potential

Potential Difference

- Most of the time, you want the relative (as opposed to the absolute)
- Recall that for gravity, an arbitrary reference level could be chosen for zero PE
- Gravity: mass falls "down," from higher to lower PE ($\Delta U>0$)
- Positive charge falls "down," from higher to lower voltage ($\Delta V>0$)
- Negative charge falls "up," from lower to higher voltage ($\Delta V<0$)

Danger! High Voltage!

- That depends...high voltage may not be dangerous at all
- A tabletop van de Graaff can generate literally 1000s of volts, and millions of school children get their hair stood up every year and nobody ends up electrocuted
- And yet a 120 V outlet can kill you
- It's about the total amount of charge that can be delivered (and over what time)

Section 21.3: Electric Potential and Conservation of Energy

Conservative Forces

- The Coulomb force behaves just like the gravitational force
- Initial energy $=$ kinetic + potential
- Final energy $=$ kinetic + potential
- Initial = final means $\Delta K=-\Delta U$

The Electron Volt

- The most literal unit there is
- The energy required to accelerate one electron through a potential difference of 1 Volt
- Why? Because sometimes a Joule is just too big...by, like, 19 or so orders of magnitude

Section 21.4: Calculating the Electric Potential

The Electric Potential Inside a Parallel-Plate Capacitor

- We already know that $E=$ constant between theplates
- Work to move a charge from one plate to the other: $W=F \cdot d=(q E) d$
- $\quad W=U$, so $U=q E d$ or $\frac{U}{q}=V=E d$!

Electric Potential of a Point Charge

- A really good mathematical derivation needs calculus (sorry)
- Understand the concept based on the inverse square behavior of the force
- When r is large, F is small and it takes less work $W=F \cdot \Delta r$ to move q
- As r gets smaller, F gets larger (but inverse square, so it's getting big pretty fast), more work for the same Δr
The Electric Potential of a Charged Sphere
- Inside the sphere? $E=0$, so $\mathrm{V}=$ constant: $V=k \frac{Q}{R}$
- Outside sphere? Looks like a point charge! $V=k \frac{Q}{r}$ (where $r>R$)

Ionization Energy

- Basically, calculate the work to move an electron from where it is (bound to an atom) to an infinite distance
- Assume that 'bound to an atom' means a sphere of positive charge the size of the atom
- Atom is neutral, and the electron has -q, so the sphere has charge $+q$
Superposition Is Still The Rule
- For anything other than a point charge, add up the discrete elements

Section 21.5: Connecting Potential and Field

Equipotential Surfaces

- Literally, equal potential (so, same voltage)
- Lines of equipotential are normal to the electric field lines
- Lines get more widely spaced with increasing distance from source charge
You Know, Like a Topographic Map
- Contour lines on a topo map show equal elevation
- You can tell from a glance whether a region has steep inclines or is fairly flat
- Just like a ball rolls downhill with greater acceleration when the hill is steeper, charges roll downhill (or uphill!) with greater acceleration when the potential gradient is steeper

This Is The Genius Part

- If $F=q E$ and $W=F \Delta x$, then $W=(q E) \Delta x$
- If $W=(q E) \Delta x=\Delta U$ and $\Delta U=q \Delta V$, then $E=\frac{\Delta V}{\Delta x}$!
- Means what, exactly? Well, $\Delta V=0$ means constant voltage, which in turn means zero E
- Means what, exactly? Ok, if $\Delta V \neq 0$, then decreasing Δx increases the E field

Conductor in Electrostatic Equilibrium

- Charge gets distributed over the surface
- Charge concentrations occur at sharp angles or corners
- $E=0$ inside the conductor
- $\quad E$ is perpendicular to the surface, pointing out

Section 21.7: Capacitance and Capacitors

Where Are We Headed With All This?

- Since we keep making connections with gravity and mechanical energy, keep going with this
- We use mechanical energy to perform mechanical work to do something useful and/or interesting
- We want to be able to use electrical energy to perform work to do other useful/interesting things
- We are trying to work out a way to store electrical PE to retrieve and use later

Parallel Plate Capacitor

- Simplest configuration: parallel conducting plates
- Attach to a battery (which, unfortunately, we have no idea how it works--yet)
- The battery's ΔV will pull e^{-}from one plate and deposit on the other (magic!)
- The creates a uniform E field between plates (and zero E outside of plates!)
Parallel Plate Capacitor: The Math
- Derive from known $E=\frac{(4 \pi k Q)}{A}$ and $V=E d$
- $C=\frac{A}{(4 \pi k d)}=\frac{\varepsilon_{o} A}{d}$
- ε_{o} : permittivity of free space $=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}$

Capacitance

- After you charge, you can disconnect the battery and plates remain charged; how much charge can you store?
- We know the E between the plates is constant, and depends on the total amount of charge: more q, more E
- You would have to increase the voltage to persuade more charges to move; more V creates more E
- So, more V puts more q on the plates: $q=C V$, where C is constant

What Makes C a Constant?

- Several things affect the ability to store charge on a pair of plates
- Area: Larger plates can store more charge (sometimes the obvious actually is obvious)
- Plate separation: At a given ΔV, increasing the separation decreases the E field (less E, less q)
- What's between the plates: Slip a dielectric in there, and you increase the ability to store charge! Higher \boldsymbol{k}, more q

A Capacitor Sandwich

- What happens if you slide something into that gap between the capacitor plates?
- Like, for example, an insulating material: this prevents the plates from touching, allows rolling, and increases the capacitance
- Dielectric constant κ : material property, express as ratio comparing effect of dielectric inserted between plates with vacuum
- $\kappa=\frac{V_{o}}{V}=\frac{E_{o}}{E}$ V_{o}, E_{o} are values with vacuum between the capacitor plates
- The dielectric always increases the capacitance:
$C=\kappa C_{o}$
$C=\frac{\kappa \varepsilon_{o} A}{d}$ (parallel plate capacitor)

Section 21.8: Energy and Capacitors

Energy of a Charged Capacitor

- You have to do electrical work to move charge from one plate to the other
- Every charge you move needs a little more work than the one before it: slope is not constant!
- Exactly like stretching a spring: every cm of stretch takes more force than the previous cm! Spring potential: $U=\frac{1}{2} k x^{2}$
- Energy to charge a capacitor: $U=\frac{1}{2} C V^{2}$ (which $=$ $\left.\frac{q^{2}}{2 C}\right)$

Energy Density

- Just like density = mass/volume, energy density = energy/volume or energy/mass
- The idea is: How much energy do you get on a perunit basis
- Ideally, you want a large return on your investment: lots of energy for a small expenditure of mass
- In the context of capacitors: mass not really relevant, size (volume) is

