This is a list of the most common relationships used throughout general chemistry calculations. You must know which ideas are related for each and how to use them as conversion factors.

1. Density
mass

volume

2. Mass percent mass $X \quad \rightleftarrows$ mass Y
3. Avogadro's Number moles \rightleftarrows number of things
4. Molar mass moles \rightleftarrows mass
5. Stoichiometry
moles $X \rightleftarrows$ moles Y
6. Molarity
moles $X \rightleftarrows$ liters solution

volume

- convert from mass to volume

$$
6.54 \mathrm{~g} \quad\left(\frac{1 \mathrm{~cm}^{3}}{0.7857 \mathrm{~g}}\right)=8.32 \mathrm{~cm}^{3}=8.32 \mathrm{~mL}
$$

- convert from volume to mass

$$
28.56 \mathrm{~cm}^{3}\left(\frac{0.7857 \mathrm{~g}}{1 \mathrm{~cm}^{3}}\right)=22.44 \mathrm{~g}
$$

- calculate density directly

$$
\text { density }=\frac{371 \mathrm{~g}}{19.3 \mathrm{~cm}^{3}}=19.2 \mathrm{~g} / \mathrm{mL}
$$

This is a list of the most common relationships used throughout general chemistry calculations. You must know which ideas are related for each and how to use them as conversion factors.

1. Density
 mass

 volume
 2. Mass percent mass $X \rightleftarrows$ mass Y

3. Avogadro's Number moles \rightleftarrows number of things
4. Molar mass

5. Stoichiometry

6. Molarity

2. Mass percent
 mass $X \rightleftarrows$ mass Y

This is a list of the most common relationships used throughout general chemistry calculations. You must know which ideas are related for each and how to use them as conversion factors.

1. Density
 mass
 volume
 2. Mass percent mass $X \rightleftarrows$ mass Y
 3. Avogadro's Number moles \rightleftarrows number of things

4. Molar mass

\longleftarrow mass
5. Stoichiometry

3. Avogadro's Number moles \rightleftarrows number of things

- number of things to moles

- moles to number of things
5.52 mole sulfur $\left(\frac{6.02 \times 10^{23} \text { atoms }}{1 \text { mole sulfur }}\right)=3.32 \times 10^{24}$ sulfur atoms

This is a list of the most common relationships used throughout general chemistry calculations. You must know which ideas are related for each and how to use them as conversion factors.

1. Density
mass

volume

2. Mass percent mass $X \rightleftarrows$ mass Y
3. Avogadro's Number moles \rightleftarrows number of things
4. Molar mass
moles \rightleftarrows mass
5. Stoichiometry
moles $\times \longrightarrow$

6. Molarity
moles X

4. Molar mass

moles \rightleftarrows mass

- moles to mass

$$
43.9 \text { mole } \mathrm{Xe}\left(\frac{131.3 \mathrm{~g}}{1 \mathrm{mot} \mathrm{Xe}}\right)=5760 \mathrm{~g} \mathrm{Xe}
$$

- mass to moles

$$
72.5 \mathrm{~g} \mathrm{CCl}_{4}\left(\frac{1 \mathrm{~mol} \mathrm{CCl}_{4}}{153.8 \mathrm{~g} \mathrm{CCl}_{4}}\right)=0.471 \mathrm{~mol} \mathrm{CCl}_{4}
$$

This is a list of the most common relationships used throughout general chemistry calculations. You must know which ideas are related for each and how to use them as conversion factors.

1. Density
mass
volume
2. Mass percent mass $X \rightleftarrows$ mass Y
3. Avogadro's Number moles \rightleftarrows number of things
4. Molar mass
moles \rightleftarrows mass
5. Stoichiometry
moles $X \rightleftarrows$ moles Y
6. Molarity
moles X
$=$
liters solution

5. Stoichiometry moles $X \rightleftarrows$ moles Y

- stoichiometry of a compound formula
$1.87 \mathrm{~mole} \mathrm{C}_{8} \mathrm{H}_{18}\left(\frac{18 \mathrm{~mol} \mathrm{H}^{1 \mathrm{~mol} \mathrm{C}_{8} \mathrm{H}_{18}}}{)}=33.7 \mathrm{~mol} \mathrm{H}\right.$ atoms
- stoichiometry of a balanced reaction
$2.6 \mathrm{~mole}_{2} \mathrm{H}_{4}\left(\frac{4 \mathrm{~mol} \mathrm{NH}_{3}}{3 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{H}_{4}}\right)=3.5 \mathrm{~mol} \mathrm{NH}_{3}$

This is a list of the most common relationships used throughout general chemistry calculations. You must know which ideas are related for each and how to use them as conversion factors.

1. Density
mass

volume

2. Mass percent mass $X \quad \rightleftarrows$ mass Y
3. Avogadro's Number moles \rightleftarrows number of things
4. Molar mass moles \rightleftarrows mass
5. Stoichiometry
moles $X \rightleftarrows$ moles Y
6. Molarity
moles $X \rightleftarrows$ liters solution

- moles to liters

$$
0.45 \text { mole EtOH }\left(\frac{1 \mathrm{~L} \mathrm{soln}}{0.200 \mathrm{~mol} \mathrm{EtOH}}\right)=2.3 \mathrm{~L} \text { of solution }
$$

- liters to moles

$$
0.114 \mathrm{~L} \text { soln }\left(\frac{1.85 \mathrm{~mol} \mathrm{KCl}}{1 \mathrm{~L} \mathrm{soln}}\right)=0.211 \mathrm{~mol} \mathrm{KCl}
$$

- calculate molarity directly

$$
0.0324 \mathrm{~g} \mathrm{NaCl}\left(\frac{1 \mathrm{~mol} \mathrm{NaCl}}{58.4 \mathrm{~g} \mathrm{NaCl}}\right)=5.55 \times 10^{-4} \text { mole NaCl }
$$

molarity $=\frac{\text { moles } X}{\text { L soln }}=\frac{5.55 \times 10^{-4} \mathrm{~mol} \mathrm{NaCl}}{0.1224 \mathrm{~L} \text { solution }}=4.53 \times 10^{-3} \mathrm{M} \mathrm{NaCl}$

