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1. Introduction

We have seen that an ideal gas is a gas of noninteracting molecules
in the limit of low concentration. We have previously determined
whether or not a gas could be treated as ideal by considering the quan-
tum concentration (related to the de Broglie wavelength.) We will now
refine this definition by considering thermal averages of the number
of particles occupying orbitals. An orbital is a state of Schrödinger’s
equation for one particle. (The term is widely used in chemistry, less
widely in physics, we’ll use it as it useful) We will call the thermal
average occupancy the distribution function f(ε, T, µ) where ε is the
energy of the orbital.

From your studies of quantum mechanics, you should recall the
importance of the orbital approach. The essence of the method is
that if interparticle interactions are weak, and we have N particles,
then we can approximate the N particle quantum state by assigning
the particles to orbitals with each orbital being a solution of a one-
particle Schrödinger equation. There are normally an infinite number
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of orbital available for occupancy. If there are no interactions between
particle, the orbital model solution of the N -particle problem is exact.

2. Fermions and Bosons

All particles are either fermions or bosons. Particles with integer spins
are bosons and are described by Bose-Einstein statistics. Particles
with half-integer spins are fermions and obey Fermi-Dirac statistics.
In composite particles, the spins combine so that the resulting com-
bination is a fermion or a boson. As example 3He is a fermion 4He
is a boson. The allowed occupancies for each of these species are dif-
ferent. An orbital can be occupied by any integral number of bosons
of the same type (including zero). An orbital can be occupied by at
most one fermion of the same species. We will examine each of these
possibilities in turn.
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2.1. Fermions and Fermi-Dirac Statistics

To find the Fermi-Dirac distribution function we consider a system
consisting of a single orbital. The system is placed in thermal and
diffusive contact with a reservoir. (If this bothers you consider the fact
that we have always taken our system as the piece we are interested in
and assigned everything else to the reservoir. This is just what we are
doing here. The real system may contain a large number of particles,
we are simply assigning their associated oribitals to the reservoir.)
Our task is to evaluate the grand partition function Z. So we need
to evaluate

Z =
∑

N,r

eβ(Nµ−ENr)

for all states and occupancies of the orbital.
For fermions, the only allowed values of N are 0 and 1, all other

occupancies are ruled out by the Paul exclusion principle. We will let
the energy of the orbital be ε if the orbital is occupied and and 0 it
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is unoccupied. We can evaluate the sum simply, as

Z = 1 + eβ(µ−ε)

The term 1 results from N = 0 and ε = 0, the other term results from
N = 1 and ENr = ε.

Using

pNr =
eβ(µN−ENr)

Z
the average thermal occupancy of the orbital is given by

〈N〉 =
∑

N,r

NpNr.

In this case then, we can write

〈N(ε)〉 =
eβ(µ−ε)

1 + eβ(µ−ε)

=
1

1 + e−β(µ−ε)
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=
1

eβ(ε−µ) + 1
.

Now let the average occupancy of the orbital with energy ε be denoted
as 〈f(ε)〉, i.e.

f(ε) = 〈N(ε)〉,

and we finally write

f(ε) =
1

eβ(ε−µ) + 1
,

this is the Fermi-Dirac distribution function. This equation gives the
average number of fermions in an orbital of energy ε. The value of f
lies between 0 and 1.

In solid state physics, the chemical potential µ is often called the
Fermi level. Chemical potential usually depends on temperature. We
call the chemical potential at T = 0 the Fermi energy. That is

µ(T = 0) ≡ µ(0) = εF .

At T = 0 all orbitals with energies less than the Fermi energy are
filled (that is they each contain a fermion). All orbital with energies
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above the Fermi energy are unoccupied. An orbital whose energy is
equal to the chemical potential will be half full. This is easy to see as

f(ε = µ) =
1

1 + 1
.

Orbitals with lower energy will be more than half full, orbitals with
higher energy are less than half full.

We will sometimes write Fermi-Dirac distribution as

〈Ni〉 =
1

eβ(εi−µ) + 1
,

then we can use

〈N〉 =

∞
∑

i=1

〈Ni〉

to relate N to µ for a given T .

2.2. Bosons and the Bose-Einstein Distribution

Bosons are essentially different from fermions as there is no limitation
on the the occupancy of an orbital. We want to find the distribution
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function for bosons as we did for fermions. This time consider a
system of noninteracting bosons in thermal and diffusive contact with
a reservoir. Let ε be the energy of an orbital when it is occupied by
one boson. Thus, when the occupancy is N , the energy will be nε.
As before, we treat one orbital as the system, the rest as part of the
reservoir. The number of particles in the single orbital is arbitrary.
Our task is again to evaluate

Z =
∑

N,r

eβ(Nµ−ENr)

for all states and occupancies of the orbital. This time we write

Z = 1 + eβ(µ−ε) + e2β(µ−ε) + e3β(µ−ε) + . . .

= 1 + eβ(µ−ε) +
(

eβ(µ−ε)
)2

+
(

eβ(µ−ε)
)3

+ . . . .

We can rewrite this in compact form as

Z =

∞
∑

N=0

eβN(µ−ε) =

∞
∑

N=0

[eβ(µ−ε)]N
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The upper limit on N should be the number of particles in the com-
bined system and reservoir. Since the reservoir can be as large as we
like, we will let the sum run to∞ to enable the series to be conve-
niently summed.

If we let x = eβ(µ−ε), then we have a geometric series.

Z =

∞
∑

N=0

xN =
1

1− x
=

1

1− eβ(µ−ε)
.

This summation is possible provided that eβ(µ−ε) < 1. This will be
true in all applications since if it were not the number of bosons in
the system would not be bounded.

Now that we have the grand partition function, we can determine
the average occupancy. Thus the average occupancy of an orbital is

〈N〉 =
∑

N,r

NpNr

Since we are taking care of the sum over states by writing Nε, we can
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replace this by a sum over N . Thus, we write

〈N〉 =
∑

N

NpN = 0 · p0 + 1 · p1 + 2 · p2 + . . . .

Thus we need to evaluate

〈N〉 =
∑

N

N
eNβ(µ−ε)

Z
=
∑

N

N
e−Nβ(ε−µ)

Z
.

To evaluate this let x = β(ε− µ), then we can write

〈N〉 =
∑

N

N
e−Nx

Z
.
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We can see that this can be easily rewritten 1 as

〈N〉 = −
1

Z

∑

N

∂

∂x
e−Nx = −

1

Z

∂Z

∂x

Now we can evaluate this expression

〈N〉 = −(1− e−x)
∂

∂x
(1− e−x)−1

= (1− e−x(1− e−x)−2(e−x)

=
e−x

1− e−x

1To get this result, I have gone back to an intermediate expression for the

grand partition function and written it as

Z = 1 + e−β(ε−µ) +
(

e−β(ε−µ)
)2

+
(

e−β(ε−µ)
)3

+ . . .

= 1 + e−x + e−2x + e−3x + . . . .
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=
1

ex − 1

〈N〉 =
1

eβ(ε−µ) − 1
.

This is the Bose-Einstein distribution. As we’ll see the switch from
+1 to −1 has large physical consequences.

We will sometimes write Bose-Einstein distribution as

〈Ni〉 =
1

eβ(εi−µ) − 1
.

3. Corrected Boltzons

Classical gases are those gases that obey Maxwell-Boltzmann statis-
tics. In such gases Ni ¿ 1 for all i, i.e. the mean occupancy is
small for all orbitals. Under such conditions, we would expect to get
similar results whether we used the Fermi-Dirac or the Bose-Einstein
distribution. In fact we can write our distribution function as

〈Ni〉 =
1

eβ(εi−µ) ± 1, 0
.
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Where
+1⇒ Fermi-Dirac
−1⇒ Bose-Einstein
0⇒ Maxwell-Boltzmann

In this expression we observe that 〈Ni〉 ¿ 1 for all i if eβ(εi−µ) À 1.
Then we have

〈Ni〉 = e−β(εi−µ) = eβ(µ−εi)

Why does this work? If 〈Ni〉 ¿ 1 for all i, it doesn’t matter how we
weigh states for 〈Ni〉 ≥ 2, none of them are occupied. In the classical
regime all three distributions are equal. The terminology corrected

boltzons takes note of the fact that to calculate partition functions we
write

Z =
ZN1
N !

.
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