AMA466: Finite Element Method

Solutions of Homework 4

Problem 5. Consider the Poisson’s equation
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1. (10 marks) Derive the weak form of the above boundary value problem.

Solution. Multiplying the equation by a test function ¥(x) € H'(Q) and Integrating
over {2 yields
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Integration by parts gives
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Since ® = ®* on the surfaces y = 0,4 is known, ¥ can be taken such that ¥ = 0 there

and then
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Therefore the weak form for the problem is:
Find ® € H'(2) such that ® =0 on y = 0,® = 47 on y = 4, and (2) holds for all
U € H'(Q) such that ¥ =0 on y = 0, 4.

2. (10 marks) Write down the shape functions of the element 3 that represent the nodes
6, 2, 7 respectively.

Solution. Since the equation for the line through the nodes 2 and 7 is x = 2, the
shape functions of the element 3 that represent the nodes 6 is
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Since the equation for the line through the nodes 6 and 7 is y = 2, the shape functions
of the element 3 that represent the nodes 2 is
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Since the equation for the line through the nodes 6 and 2 is z + y = 2, the shape
functions of the element 3 that represent the nodes 7 is
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N3(z,y) = 5

3. (10 marks) Calculate the local element stiffness matrix (£;), (4,7 = 1,2,3).



Solution.
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4. (10 marks) Calculate the surface integrals on the boundary x = 0 and = = 8.

Solution. We need to compute X}, 31, %1, X¢, 213 B3 315 $118 associated with the
elements 1,4, 13, 15. The shape function on the element 13 that represents the node

10 is
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The shape function on the element 13 that represents the node 15 is

r+y—10

NQIB(:C7y) = 2

Because its restriction on = 8 is —1 + y/2, we have

DI /24(% — 1)(65y) = 650/3.

The shape function on the element 15 that represents the node 5 is

So
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The shape function on the element 15 that represents the node 10 is
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Because its restriction on x = 8 is y/2, we have
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The shape function on the element 1 that represents the node 6 is
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So
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The shape function on the element 1 that represents the node 11 is
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Because its restriction on = 0 is —1 + y/2, we have
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The shape function on the element 4 that represents the node 1 is
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So
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The shape function on the element 4 that represents the node 6 is
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So we have
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. (10 marks) Use Poisson.m to find the finite element approximate solution of the bound-
ary value problem. Plot the approximation and the exact solution & = xy.

Solution. The NPcode, INITIAL.m, and COEF.m are modifies as follows:
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Specify boundary conditions

for I=1:NUMNP
if NPcode(I) ==

NPBC(I) = 1;

PHI(I) = 0;

QD = 0;
elseif NPcode(I) == 21

NPBC(I) = O;

PHI(I) = 0;

Q(I) = 130/3;
elseif NPcode(I) == 22

NPBC(I) = O;

PHI(I) = 0;

QD) = 780/3;
elseif NPcode(I) == 23

NPBC(I) = O;

PHI(I) = 0;

Q(I) = 650/3;
elseif NPcode(I) == 3

NPBC(I) = 1;

PHI(I) = 4*XORD(I);

QD = 0;
elseif NPcode(I) == 41

NPBC(I) = O;

PHI(I) = 0;

Q(I) = -2/3;
elseif NPcode(I) == 42

NPBC(I) = O;

PHI(I) = 0;

Q(I) = -4;
elseif NPcode(I) == 43



NPBC(I) = 0;
PHI(I) = 0;
Q(D = -10/3;
end
end
b
A
yA Coefficients for poisson.m
b
b RXI = k_x
b RYI = k_Y
) QI =Q
)
b
RXI = 1+XC"2;
RYI = 1+YC"2;
QVI = -4xXCxYC;

The exact solution & = xy and its finite element approximation are shown in Figure 1.



Figure 1: The above: Exact solution ® = xy; The below: The finite element approximation.



