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Model-Order Reduction of Finite-Element
Approximations of Passive Electromagnetic
Devices Including Lumped
Electrical-Circuit Models

Hong Wu and Andreas C. Cangellaris, Fellow, IEEE

Abstract—A methodology is presented for the development
of reduced-order macromodels for multiport passive electro-
magnetic devices that include embedded lumped elements. The
proposed methodology utilizes a discrete state-space model for
the electromagnetic device, generated through the application
of the finite-element method for the spatial discretization of
Maxwell’s curl equations. The incorporation of lumped resis-
tors, inductors, and capacitors is effected through the direct
stamping of the state-space voltage—current relationship for these
elements in the matrices of the generated state-space form of
the discrete model. The conditions necessary for the discrete
model to be passive are discussed. The subsequent reduction of
the discrete state-space model is effected through the application
of a Krylov-subspace-based model-order reduction scheme that
guarantees the passivity of the generated multiport macromodel,
provided that the original state-space model is passive. The
proposed methodology is demonstrated and validated through its
application for the generation of reduced-order macromodels for
a coaxial cable circuit and a microstrip directional coupler circuit.

Index Terms—Fast algorithms, finite-element methods (FEMS),
full-wave computer-aided design (CAD), model-order reduction.

1. INTRODUCTION

CCURATE prediction of the electromagnetic response

of integrated and packaged electronic components and
systems is becoming of paramount importance as increasing
switching speeds of digital electronics drive signal bandwidths
to tens of gigahertz at all levels of packaging. This need
is further compounded by the integration of sensitive RF
and microwave components and functional blocks in close
proximity with their noisy digital counterparts. Thus, in ad-
dition to supporting signal integrity and noise-aware digital
signal and power distribution network design, computer-aided
electromagnetic analysis becomes an indispensable tool for
the prediction and mitigation of electromagnetic interference
bottlenecks in mixed-signal integrated electronics.

Manuscript received December 15, 2003; revised June 1, 2004. This work was
supported in part by Texas Instruments Incorporated under a custom research
grant administered by the Semiconductor Research Corporation.

The authors are with the Center for Computational Electromagnetics and
the Electromagnetics Laboratory, Department of Electrical and Computer
Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
USA.

Digital Object Identifier 10.1109/TMTT.2004.834582

However, design-driven computer-aided electromagnetic
analysis can be effective only if its computational efficiency
can support expedient design iteration. For today’s designs,
the need for computational efficiency is driven primarily by
short product design cycles. However, in the not very distant
future, when virtual prototyping will be the only means for
tackling the design challenges associated with first-pass design
of mixed-signal and mixed-physics integrated microsytems and
nanosystems, computationally efficient physics-based mod-
eling and simulation will manifest itself as an indispensable
enabling design capability.

Acknowledging the aforementioned modeling/simulation
needs and technology trends, the computational electromag-
netics community has been exploring numerous ways in which
the escalating electromagnetic modeling complexity can be
tackled effectively. These research efforts may be grouped
in three classes. The first class involves fast integral-equa-
tion-based field solvers of computational complexity that scales
linearly with the number of unknowns (e.g., [1]-[4]), and
multigrid and multilevel methods for enhancing the robustness
and expediting the convergence of finite-method-based solvers
(e.g., [5]-[8], [18], and [19]).

The second class encompasses the various extensions of
the model-order reduction techniques used extensively in
large-scale circuit simulation ([9]-[12]) to the discrete model
complexity reduction and subsequent compact macromodeling
of electromagnetic structures in terms of broad-band multiport
networks (e.g., [13]-[17], and [20]-[23]). In the context of
finite-method-based discretization of electromagnetic systems,
in addition to enhancing the efficiency of the numerical
computation of the broad-band response of the electromag-
netic device/component (e.g., [13]-[15], [17], and [21]-[23]),
reduced-order macromodeling facilitates multiport electro-
magnetic device/component abstraction in matrix transfer
function forms that are compatible with general-purpose linear
and nonlinear network simulation tools (e.g., [16] and [20]).
Furthermore, use of model-order reduction has been proposed
as a means for facilitating and expediting finite-difference
and finite-element modeling of structures containing multiple
instantiations of the same feature or subcomponent, especially
when its electrical size is small enough to require finer meshing
for its discretization (e.g., [24]-[26]).
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The third class of research efforts is concerned with the devel-
opment of hybrid modeling methodologies, which, despite their
limited investigation to date, hold the potential for significant
improvement in both modeling versatility and computational ef-
ficiency compared to the methodologies in use today. Loosely
speaking, hybrid methods are characterized by the concurrent
utilization of different modeling methodologies and/or models,
of different degrees of accuracy and complexity, to facilitate the
development of comprehensive and accurate numerical models
for electrically large and complicated structures.

A popular subset of the aforementioned hybrid models is
the one that combines the application of a finite method (e.g.,
finite difference, finite element or finite volume) with lumped
electrical-circuit elements for the modeling of high-frequency
electromagnetic devices that exhibit significant disparity in
the electrical size of their geometric features. One of the most
common applications of such hybrid modeling has been in
the electromagnetic analysis of integrated planar circuits, both
passive and active (e.g., [27]-[33]). As a representative ex-
ample, we mention the often considered in the literature model
for integrated microwave amplifiers, where electromagnetic
(distributed) models for the feed and matching networks are
combined with lumped-circuit models for the semiconductor
device, bond wires, and the terminating and biasing elements,
the electrical size of which is sufficiently small to justify the
use of lumped elements for their representation (see, e.g., [34]).

The recent trends for higher electronic functionality in-
tegration at the package and chip level will further increase
the demand for the utilization of the aforementioned hybrid
electromagnetic and lumped-circuit (EM-LC) modeling. The
tight coupling of passive components in such three-dimensional
environments renders the standalone modeling of individual
components highly inaccurate, thus necessitating the im-
plementation of comprehensive multicomponent models for
accurate representation of the impact of component interactions
on the electromagnetic response of the system. Furthermore,
the geometric and material complexity of the three-dimensional
multilayered geometries involved is such that finite methods
are best suited for their modeling.

Once the electromagnetic analysis of the aforementioned
EM-LC models has been completed, their abstraction in terms of
broad-band multiport network representations, compatible with
general-purpose network analysis-oriented nonlinear simulators
is desired for the purposes of system-level analysis. A way
in which the Krylov-subspace-based model-order reduction
methods mentioned earlier can be applied for the development of
such multiport representations of EM-LC models directly from
the discrete model is presented in this paper.

This paper is organized as follows. The finite-element
modeling methodology used is discussed first in Section II.
The proposed Krylov-subspace-based model-order reduction
methodology and its numerical implementation are discussed
in Section III. This is followed by a presentation of several
numerical studies in Section IV, aimed at the demonstration
and validation of the proposed methodology. This paper con-
cludes with a summary of the contributions of this study and a
discussion of ongoing and future enhancements.
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II. FINITE-ELEMENT MODEL

A. Discretization of Maxwell’s Curl Equations

The development of the finite-element model assumes a
linear electromagnetic system. Even though the proposed model
is applicable to the case of anisotropic media, material isotropy
will be assumed for the purposes of this paper. Maxwell’s curl
equations in Laplace domain assume the form

VXE:—S§7
B . Lo

Vx| — | =se+cFE+ Jg @))
I

where s is the complex frequency, (e, i1, o) denote the electro-
magnetic properties of the media (assumed to be position de-
pendent), and fs denotes the electric current source density. Fol-
lowing [35], the electric field intensity E and the magnetic flux
density B are expanded, respectively, in the tangentially con-
tinuous vector space W, and normally continuous vector space
W,,. Hence, it is

Ne Ny
E=> weih, B=Y ayii,. 2)
i 7

It is noted that, as it is immediately evident from the explicit
forms of the expansion functions given in Section II-B, the units
of w,;, and 1, are, respectively, m~' and m~2. Hence, the
coefficients in the expansions of E and B are, respectively,
volts and webers. The above expansions will be used in the
weak statement of the electromagnetic boundary value problem,
which is obtained from (1) through multiplication of the first and
second equations by p =17, and 0;,, respectively, and subse-
quent integration over the domain of interest {2 with boundary
S. After a straightforward integration by parts step, this yields

S 1 S ]
/VXE-—wndv:—s/B-—zD'ndm
Ja w Q 2
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—/Vxﬂt~—de
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where 7. denotes the outward-pointing unit normal on S. For
simplicity, only unbounded boundaries are considered for
the purposes of this paper, on which the first-order absorbing
boundary condition will be utilized for the purposes of this
paper. Let i denote the intrinsic impedance of the unbounded
medium. The first-order absorbing boundary condition then
assumes the form

Ax H=—-hxnxE. @)

|

Substitution of (2) in (3) and subsequent testing with each one
of the expansion functions w,,, ¢ = 1,2,..., N, and @;,, ¢ =
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1,2,..., N, lead to the finite-element system of equations that
may be cast in matrix form as follows:

0 D Ty | _ _ Pb 0 Tp 0
o o)==l 2R e
The vectors x, and z. contain the expansion coefficients in the

approximation of BandE, respectively. The expressions for the
elements of the matrices in (5) are given as follows:

R
D;; = / V X by, - =y, dv
Q 2
S S PO
Zij = ;- 0w, dv + @ 0 X Wy, - —N X Wy, ds
Ja Js n
I
P, = n; + —Wn,dv
Q
Pei]. = / u_)'tl. . 671715]. dv
Q
up = — [ Wy, - Jsdv. (6)

2

This completes the discretization of Maxwell’s curl equa-
tions. As discussed in detail in [17] and [35], in addition to phys-
ical consistency and improved numerical robustness, use of the
tangentially continuous vector space W; and normally contin-
uous vector space W,, for the expansion of the electric-field in-
tensity and the magnetic flux density, respectively, leads to the
skew-symmetric matrix on the left-hand side of (5), a property
needed to guarantee the passivity of the generated reduced-order
macromodel of the electromagnetic system. This point will be
elaborated further in Section II-B.

B. Incorporation of Lumped Elements

Next, the incorporation of lumped elements in the discrete
model will be discussed. For this purpose, a specific choice
for the order of the expansion functions is required. Thus, ze-
roth-order edge elements are chosen for the expansion of E, ac-
companied by a consistent choice for the order of the expansion
functions for B , as follows:

Wy € Wy = {)\ZV)\J - )\JV/\l | 7 < J}
wy, € W, = {)\ZV/\g X VAr + )\JV/\k x VA
+ AV x V)\j | 1<7< k} @)

In the above expression, \; are the simplex (or barycentric) co-
ordinates [36]. Let k& and k' denote two edges in the grid. w;
then satisfies the condition

/
/ Wy, - dl = b g ®)
k

where 0y, 1+ is Kronecker’s delta. This is the mathematical state-
ment of the fact that the line integral of the edge element w, in
(7) equals 1 along the edge k and 0 along all others edges. This
result facilitates the definition of the voltage V. along edge &
through the following integral:

N.
vkz/ E-d*z:/ Co iy, dl = 2. 9)
Jedge k -cdgck; ' '

2307

Furthermore, it enables the direct incorporation of a lumped cur-
rent source in the discrete model in the following fashion. Let
I}, denote a lumped current source to be inserted along edge k.
Clearly, the electric current density source term must be used
for its insertion in the electromagnetic model. Referring to the
element expression for the source vector u in (5), it is

uk:—/u_ftk-Jdv
Q

:—/ </ Ju?tk-cfl> ds
area edge k

= — I (10)

Equations (9) and (10) suggest the following procedure for
the incorporation of lumped resistors and lumped capacitors in
the discrete model. The voltage—current relation for a resistor R
is

RV =1 (11)
Hence, the insertion of a lumped resistor R}, at edge &k can be ef-
fected through the addition of the term R;lwe . to the left-hand
side of the second equation in (5). This yields

ik — Zri + R (12)

Similarly, using the fact that the voltage—current relation for a
capacitor C' is

sCV =1 (13)

the assignment of a lumped capacitor C}, at edge k is effected
through the introduction of the term sCjx., to the right-hand
side of the second equation of (5). This yields

P, — P.,, +Ck. (14)

The aforementioned procedure for the introduction of
lumped resistors and capacitors in the discrete electromagnetic
model could, in principle, also be used for the incorporation
of lumped inductors. However, the voltage—current relation for
the inductor, analogous to (11) and (13), involves the inverse of
the complex frequency s

(sL)"'V =1. (15)

This form is not compatible with the linear in s form of (5),
which lends itself to the utilization of Krylov-subspace-based
model-order reduction processes. However, there is a simple
way in which lumped inductors can be inserted in the discrete
model without interfering with the Krylov model-order reduc-
tion process. The way this is done requires an understanding
of the numerical process in which model-order reduction of (5)
is implemented. Therefore, the incorporation of lumped induc-
tors in the discrete electromagnetic model will be discussed in
Section III in conjunction with the presentation of the proposed
model-order reduction methodology.

III. KRYLOV MODEL-ORDER REDUCTION

In order to provide for a general multiple-input—-mul-
tiple-output (MIMO) formalism of the model-order reduction
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methodology, the source vector in (5) is rewritten in the
following multiple-input form:

0 S 0
Unx1) = [u} = T(nxar,)S(px1) = [T} S(M,x1)-

(NXM,)
(16)

In (16), S denotes the vector of sources, where each one is as-

signed to one of the M, ports of the system. The mapping matrix

T maps the sources to the M, edges of the finite-element mesh,

along which the ports (and, hence, the sources) are assigned. NV

denotes the number of degrees of freedom in the finite-element

approximation, which, in view of (2), is N = N, + N,.
Introducing the following matrix notation:

[ o D [P 0 _[X
o[ 2] e[t 8] x-[¥]

the formal solution of (5) is given by

X = (G+sC)'TS. (18)

Since current sources are employed for the purposes of this
formulation, a MIMO transfer function of the system can be
obtained by sampling the voltage at the M, ports. In view of
(9) and (16), this is effected through the matrix operation

V, = 77X = [TT(G+SC)—1T] s. (19)
It is recognized immediately that the matrix
Hyz(s) =17(G + sC) T (20)

is the impedance matrix for the electromagnetic multiport.

A. Passive Model-Order Reduction

The model-order reduction process adopted for our purposes
is the one introduced in [37]. Provided that the discrete system
(5) is passive, it is shown in [37] that the generated reduced-
order model is also passive. The passivity of (5) is, in turn, guar-
anteed provided that C' is symmetric nonnegative definite and G
is nonnegative definite. That C' is symmetric nonnegative defi-
nite immediately follows from the expressions for the elements
of the matrices P, and P, given in Section II, provided that the
media have positive electric permittivity and magnetic perme-
ability and that, in view of (14), the lumped capacitors are pos-
itive. With regards to G, it is shown in [37] that since G is skew
symmetric, the matrix is nonnegative definite provided that Z
is nonnegative definite. Clearly, from the expression for the ele-
ments of G, this is the case, provided that the conductivity of the
media is nonnegative and that, in view of (12), the lumped resis-
tors are nonnegative. In summary, (5) is a passive discrete model
of the electromagnetic system; hence, application of the passive
reduced-order interconnect macromdeling algorithm (PRIMA)
model-order reduction process of [37] will result in a passive
reduced-order model.

It has been pointed out repeatedly in the literature that all
Krylov-subspace-based model-order reduction methods match
a number of the moments of the transfer function at a prede-
termined frequency sg (e.g., [11] and [37]). The choice of sg
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is controlled by the frequency bandwidth over which the re-
duced-order model is desired to be accurate. Rewriting (20) in
the form

Hy(s) =17 (1 — (s —s0)( - (G + 500)—10))
X (G + s900)7'T  (21)
leads to the definition of the following two matrices:

(22)
(23)

A(NXN) = — (G + 800)710
R(NX]\/IP) = (G + 800)_1T.

These matrices are used for the construction of the Krylov sub-
space K(A, R, q), where q denotes the order of the reduced
model. The definition of the Krylov subspace given below in-
dicates the procedure that is used for its construction

K(A,R,q) =colsp [R, AR, A’R, . ..,
AFTIR AFrg, AFry, o Ay, ]

k= {%J m = q — kM,. (24)
In the above equation 7,, n = 1,2,..., M, denotes the nth
column of the matrix R.

Let Finxaz,) denote an orthonormal basis for K (4, R, q).
Through the use of the block Arnoldi algorithm, F' is generated
directly during the process of the construction of K (A, R, q).
The number of required iterations is |¢/M,| 4 1. It is noted that
the extra iteration is not required if the order ¢ is an integer mul-
tiple of the number of ports M,,. The matrix F is used directly
for the reduction of the original system through the following
equations:

X =FX
T=FHT

G=FHGF

C=FHCF (25)

In the above equation, X is the reduced state vector and the
superscript H denotes complex-conjugate matrix transposition.

B. Efficient Construction of F

As elaborated in [17], the computational efficiency of the con-
struction of the Krylov subspace is penalized by the large dimen-
sion of the discrete electromagnetic problem. This, in turn, is
due to the fact that, in the discrete model obtained from the dis-
cretization of Maxwell’s curl equations, both the electric-field
intensity and the magnetic flux density are kept as unknowns.
A methodology for overcoming this bottleneck was proposed
and demonstrated in [17]. This methodology is utilized for the
purposes of the construction of the projection matrix F'. Its key
steps are presented in the development below. The reader is re-
ferred to [17] for a more detailed discussion.

First, it is noted that the computation of R can be split into
two parts, i.e., a magnetic part R, and an electric part R, as
follows:

R —1
-Gy - (2] [75)7 ] 3]



WU AND CANGELLARIS: MODEL-ORDER REDUCTION OF FINITE-ELEMENT APPROXIMATIONS OF PASSIVE ELECTROMAGNETIC DEVICES

where it is

R, = (DTbelD + s0Z + s%Pe)il soT

27)

It is shown in [17] that the elements of the matrix ¥ =
DTbelD are given by

1
YL_] = / V x U7ti -—V x ﬂ?tjdv. (28)
Q H

At this point, it is appropriate to elaborate on the properties
of the aforementioned matrix Y since its definition provides us
with the means for incorporating lumped inductors in the dis-
crete electromagnetic model. From (28), it is evident that the
units of the elements of Y are (Henry)~!. This suggests that it
is through Y that lumped inductors should be incorporated in
the model.

Furthermore, from (5), it is immediately apparent that Y re-
sults from the elimination of the vector z;. More specifically,
this elimination results in the following matrix equation:

s Yo + Zwe + sPeve = u. 29)
Recognized as the finite-element approximation for the vector
Helmholtz equation for the electric field [17], the physical
interpretation of the three terms on the left-hand side of (29)
is straightforward. Considering the equation associated with
edge k in the finite-element mesh, with the forcing term on the
right-hand side associated with an impressed current source
along this edge and z., representing the voltage along the
edge, the three terms on the left-hand side are recognized,
respectively, as the inductive, conductive, and capacitive com-
ponents of the current flow through the edge. Consequently,
in view of (15) and (9), it follows that the introduction of a
lumped inductor Lj, along the edge k can be effected through
the addition of the quantity L,:l to the entry Yi. Hence, it is
Yike — Yir + L " (30)

Returning to the construction of the Krylov subspace, and
recalling that in the block Arnoldi process the construction of
the matrix F' is effected directly during the Arnoldi iteration, F’
is also split into two parts, i.e., a magnetic part F} and an electric
part F,. We define Fy;, = Pb_lDFb. During the p + 1 iteration
step, it is then

pon _ | B
- Fe(p+1)
_| B0 o) Ryt
- 0 I||fpeth
— AF®)
_ 4| BD o[ B
=417 7 ] 31)
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F, b(,f"'_l) and F7*Y are obtained through the equations
Y Iptp o] [ o [RY
bb — b A b bb (32)
F@tD 0 I 0 I||Fp®
which can be written separately and explicitly as
F®HD = (Y 4 50Z + s3P.) " (SOPBFE(T’) + YF,fi’))
-1
Ry = <—> FFD, (33)
S0

Clearly, the gain in efficiency stems from the fact that only the
electric part for F is solved for (requiring the factorization of
the matrix (Y + s9Z + s3P.) of dimension N,. Similarly, the
computation of the inner product in the Gramm-Schmidt or-
thogonalization step employed in the Arnoldi process can be
approximated as follows:

(Fi, Fj) ~ (Fe i, Fe j) (34)
where use is made of the fact that the magnitude of the elec-
tric-field intensity E is much larger than the magnitude of the
magnetic flux density B. More specifically, it follows immedi-
ately from the differential equation statement of Faraday’s law
of induction that | E| ~ |sh]| B|, where h stands for the finite-el-
ement grid size. In particular, it is the expansion frequency sy
that dictates the relationship of |E| and |B| in the context of
the Arnoldi process. Hence, it is the magnitude of the factor
w = |sph| that controls the accuracy of the approximation (34).
Expressed in terms of the wavelength )\g at the expansion fre-
quency, it is w = 2mv,(h/Ag), where v, is the wave velocity.
Clearly, the approximation (34) is expected to be highly accurate
for the types of media encountered in most engineering appli-
cations provided that h /g does not become exceedingly small.
For those cases where h/)\g is small enough to yield the ap-
proximation (34) inaccurate, the techniques of [7] and [8] must
be applied instead for the solution of the finite-element approx-
imation of the electromagnetic problem. This topic is beyond
the scope of this paper, but will be addressed in a forthcoming
paper.

Once F' has been constructed, (25) is used to construct the
reduced model. The equations for the matrix projections may
be written in terms of F, and Fy; as follows:

XeFko B P, DFy iy

'{ie Fefi'e
G=FIGF =F}YF. - FlYFE,, + F'ZF,
C =FHECF = Fi{YF,, + FEP,F,

T=FHiT = FHT, (35)

Finally, the impedance matrix representation for the reduced-

order multiport system assumes the form
Hy(s) =TT(G + sC)~'T. (36)

Each of the elements of Hz(s) is a rational function of s with ¢

poles. The way these rational functions can be used in conjunc-
tion with general-purpose network analysis-oriented nonlinear
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simulation tools has been discussed extensively in the literature
(e.g., [91, [12], [16], and [37]).

IV. NUMERICAL EXPERIMENTS AND VALIDATION

The numerical examples presented here are for two structures
for which (approximate) analytic solutions based on transmis-
sion-line (TL) theory can be obtained. This way, the proposed
reduced-order macromodeling method can be validated.

A. Terminated Coaxial Cable

The first example considered is a terminated air-filled coaxial
cable. The length of the coaxial cable is 1 m and its two elec-
trodes are assumed to be perfectly conducting. The radius of the
inner circular cylindrical electrode is 4 mm. The inner radius
of the outer circular cylindrical electrode is 8 mm. The cable
is terminated at its far end by a lumped circuit that includes a
100-pF capacitor in series with the parallel combination of a
5-Q resistor with a 10-nH inductor. In addition, on the driving
end of the cable, a 5-{2 shunt resistor is present connecting the
two electrodes. A TL model for this system is straightforward
to set up and analyze. For the purposes of macromodeling, what
is of interest is the frequency-dependent input impedance of the
resulting circuit.

The finite-element model for this structure is developed as
follows. Since the two electrodes are perfectly conducting, only
the cylindrical air-filled volume between them needs to be dis-
cretized. The two end surfaces of the cable are the ones used for
the assignment of the lumped elements. Considering the far end
first, two cascaded edges, connecting the inner and outer elec-
trodes, are selected. The capacitor is assigned along one of these
edges. The parallel combination of the resistor and inductor is
assigned at the other edge. Along all the remaining edges on
the far-end cross-sectional boundary surface, the perfect mag-
netic conductor (PMC) boundary condition is enforced. This is
done to make the three-dimensional finite-element model for the
structure mimic the TL model as closely as possible.

Similarly, on the cross-sectional boundary associated with the
driving end of the coaxial cable, a PMC condition is assigned
along all edges, except for one that connects the two electrodes,
along which the 5-2 resistor is assigned. This edge is also se-
lected as the “port” at which the driving current source (of 1 A)
will be connected and the voltage will be measured for obtaining
the one-port input impedance of the terminated cable.

The bandwidth of interest is 600 MHz. The expansion
frequency is taken to be 300 MHz. The finite-element model
employed has 920 nodes and 3121 tetrahedra. The number of
edge (electric field) unknowns is 2687, while the number of
facet (magnetic flux) unknowns is 5617. Thus, the proposed
methodology requires the LU decomposition (a procedure
for decomposing a square matrix into a product of a lower
triangular matrix and an upper triangular matrix) of a matrix of
size 2687 instead of one of size 8304 that would be required
if the modified Arnoldi process described in Section III was
not implemented. The single-frequency LU decomposition
of the sparse finite-element method (FEM) matrix requires
2 s on a Pentium IV (2.4 GHz) PC with 512-MB memory.
The associated memory usage is 5 MB. Application of the
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Fig. 1. Input impedance of a terminated coaxial cable.

PRIMA model-order reduction process for the generation of a
macromodel of order 20 requires 0.5 s per iteration.

The calculated real and imaginary parts of the input
impedance are compared in Fig. 1 to those obtained from the
analytical solution of the (approximate) TL model. For the case
of a reduced model of order 7, a large deviation occurs below
150 MHz and above 550 MHz. Since the expansion frequency
is taken at the middle point of the bandwidth of interest, (i.e.,
for this case, at 300 MHz), a degradation of the accuracy of
the generated reduced-order model as we approach the end
points of the bandwidth interval of interest is anticipated.
This is indeed the case for the low-order reduced model. The
situation is rectified by increasing the order of the reduced
model. As indicated by the plots in Fig. 1, a reduced model of
order 15 yields excellent accuracy across the entire bandwidth
of interest.

B. Microstrip Directional Coupler

The second validation study conducted involved a microstrip
directional coupler. While more complicated than the coaxial
cable structure considered above, an analytic solution for the
response of a directional coupler based on coupled TL theory
is possible under the assumption that electromagnetic radiation
and related higher-order electromagnetic effects associated with
substrate mode excitation are neglected (e.g., [38]). However,
the finite-element model for the structure will capture these ef-
fects; hence, a departure of the electromagnetic response ob-
tained by the finite-element solution from that obtained using
the TL model is to expected, especially at higher frequencies.

The strip dimensions for the coupler were selected such
that both the characteristic impedance Z.n,, of the isolated
microstrip and the quantity \/Zoqq Zeven (Where Zodd, Zeven
are, respectively, the odd- and even-mode impedances of the
coupled symmetric microstrip) are 50 2. Thus, the strip width
is 0.48 mm, the strip thickness is 0.1 mm, and the substrate
thickness is 0.635 mm, while the edge to edge distance between
the two strips is 0.43 mm. The relative permittivity of the
substrate is 11.1. Both dielectric and conductor losses are
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Fig. 2. Top view of the layout of the microstrip directional coupler.

assumed negligible for the purposes of this study. The length
over which the two strips are coupled is taken to be 10 mm.

The geometry and material data described above suffice for
the construction of the approximate TL model for the direc-
tional coupler. However, additional information is required for
the completion of the three-dimensional geometry that will be
analyzed using the FEM. Fig. 2 is provided to facilitate the de-
scription of the geometry. Four microstrip feed lines of length
0.5 mm and of the same cross-sectional dimensions with those
of each strip, oriented normally to the axis of the coupler, are
used to access the coupler. The transition from each feed line to
the 10-mm-long coupled portion of the strips of the coupler is
effected through 90° circular microstrip sectors of 0.5-mm inner
radius and 0.98-mm outer radius. A 30 mm X 15 mm X 8 mm
rectangular box is used as the computational domain for the fi-
nite-element modeling of the coupler. Except for the perfectly
conducting bottom side that models the microstrip ground plane,
the first-order absorbing boundary condition is imposed on the
five remaining sides of the box to simulate an unbounded do-
main. The coupler geometry is placed in the center of the plane
at a distance equal to the substrate thickness from the bottom
side.

It is well known that the operation of the coupler requires
50-€2 (matched) terminations at its ports. This is done automati-
cally in the finite-element model through the direct implementa-
tion of lumped 50-€2 resistors. The edges along which these re-
sistors are connected serve as the ports for the resulting four-port
structure. For the purposes of making a direct comparison with
the results obtained from the approximate TL-based analysis of
the coupler, the following excitation and termination scheme is
employed. Port 1 is driven by a 2-V voltage source with a 50-2
input resistance. In the finite-element model, this source is as-
signed along an edge that connects the strip to the ground. The
remaining three ports are terminated with 50-€2 resistors, each
resistor assigned to an edge that connects the strip to ground. (It
should be clear that if a path of several cascaded edges is defined
between a node on the strip and a node on the ground plane, the
resistance value must be properly distributed among the edges
so that the total resistance equals 50 €2.) Finally, the port assign-
ment is as follows. Port 2 is the through port at the far end of
the driven line. Port 3 is the isolated port at the far end of the
quiet line. Finally, Port 4 is the coupled port at the near end of
the quiet line (directly opposite to the driven port).
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Fig. 3. Comparison of the responses obtained from the full-wave EM-LC

model with those obtained from a coupled TL model for the microstrip
directional coupler geometry of Fig. 2.

The number of edge (electric field) unknowns in the gen-
erated finite-element model is 59132, while the number of
facet (magnetic flux) unknowns is 104 810. Thus, the proposed
methodology requires the LU decomposition of a matrix
of size 59132 instead of one of size 163942 that would be
required if the modified Arnoldi process of Section III was
not implemented. The expansion frequency was taken to be
8 GHz (i.e., at the center of the frequency band of interest).
The single-frequency LU decomposition of the sparse FEM
matrix requires 178 s on a Pentium IV (2.4 GHz) PC with 2-GB
memory. The required memory is 750 MB. The CPU time for
each iteration step in the Arnoldi process is approximately 10 s.

Fig. 3 depicts a comparison of the coupled TL model response
for the coupler to that obtained from the finite-element-gen-
erated reduced-order model. The ideal behavior of total isola-
tion and perfectly balanced power delivery to the coupled and
through ports is clearly indicated over the 16-GHz frequency
bandwidth of interest. The effective permittivity for the isolated
microstrip is 6.69; hence, the 10-mm-long coupler is equal to
A/4 at a frequency of approximately 2.90 GHz. At this fre-
quency, a peak for the voltage at the coupled port is expected
in the analytic response. This is clearly confirmed from the plot
in Fig. 3.

Also shown in Fig. 3 is the electromagnetic response ob-
tained from the finite-element modeling of the actual three-
dimensional structure. More specifically, both the response
obtained through the solution of the problem at several frequen-
cies over the bandwidth of interest, and the one generated by a
reduced macromodel of order 20 are plotted. The two sets of
responses are in excellent agreement. However, a discrepancy
is observed between them and the ideal ones generated from
coupled TL theory. Isolation of port 3 is not perfect anymore,
and the coupling to it increases with frequency. Also increasing
is the coupling to the coupled port. This increase in coupling
for both ports is primarily due to the surface wave coupling
through the substrate. As expected, this coupling comes at
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the expense of a decrease in power received at the through
port, as clearly depicted in Fig. 3. However, at sufficiently
low frequencies, the calculated response correlates fairly well
with the ideal response. For example, maximum coupling is
obtained for a frequency very close to 2.90 GHz.

V. CONCLUDING REMARKS

In summary, a methodology has been presented and validated
for the development of reduced-order macromodels of multiport
passive electromagnetic devices that include lumped elements.
The discrete electromagnetic model used in the model-order
reduction process is obtained from the finite-element approx-
imation of Maxwell’s curl equations. Use of zeroth-order edge
elements for the expansion of the electric-field intensity, ac-
companied by a consistent choice for the order of the expan-
sion functions for the magnetic flux density, results in a passive
discrete model, the state-space form of which facilitates the di-
rect stamping of lumped elements such as resistors, inductors,
capacitors, and lumped sources. Each of the lumped elements
is assigned with an edge in the discrete finite-element model.
Thus, the line integral of the electric field along the edge and
the circulation of the magnetic field around the edge are used,
respectively, as the associated voltage and current quantities for
the lumped element. In this manner, in addition to modal ports,
used previously for the purposes of macromodeling of electro-
magnetic devices, local ports can be defined, associated with
either one or a set of cascaded edges in the grid.

The reduction of the generated discrete model is effected
through the application of a modified version of a Krylov-sub-
space-based model-order reduction process called PRIMA.
The modified version splits the construction of the Krylov
subspace vectors into their electric-field intensity and magnetic
flux density parts. In this manner, all matrix—vector product
manipulations in the reduction process are associated with the
calculation of the electric-field intensity only. The magnetic
flux density is then calculated with O(/N') complexity through
the discrete form of Faraday’s law. Hence, the computational
complexity of the model-order reduction process is controlled
only by the number of edges in the finite-element model.

The proposed methodology and its numerical implementa-
tion were validated through their application for the modeling
of structures for which approximate analytic solutions can be
obtained using TL theory models. More specifically, a termi-
nated coaxial cable and a symmetric microstrip directional cou-
pler were analyzed.

Contrary to the traditional way in which network parame-
ters for such waveguiding structures are generated (where the
modal fields for the propagating modes at the waveguide ports
are being used for the definition of the port variables), the in-
corporation of lumped-circuit elements in the model leads to
increased flexibility in the way passive electromagnetic devices
are modeled and multiport macromodels for them are defined.

For example, the direct incorporation of lumped-circuit
element termination of waveguiding structures enables the
more accurate modeling of higher-order electromagnetic
attributes of these structures such as radiated emission and
substrate-induced surface-wave excitation and coupling, and
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the incorporation of these effects in the generated reduced-order
multiport network macromodel. Furthermore, combinations of
resistive, capacitive, and inductive circuit elements are used
to model lumped inductors or capacitors, often incorporated
as surface-mounted components in both planar RF/microwave
circuits (e.g., as tuning elements, RF chokes, or as elements
of the bias circuit of active devices) and multilayered, inter-
connect, and power distribution networks for integrated and
mixed-signal digital circuits (e.g., for decoupling and noise
filtering). The proposed methodology facilitates the direct fi-
nite-element-based modeling and the subsequent reduced-order
macromodeling of the resulting hybrid (distributed and lumped
component) structures.

Building upon this concept of hybrid (distributed electromag-
netic and lumped electrical circuit) modeling, the utilization of
lumped-circuit element description of electrically small features
of a complicated electromagnetic structure helps alleviate the
finite-element grid construction and leads to discrete finite-ele-
ment models with reduced number of unknowns. Such models
are particularly useful in the analysis and reduced-order macro-
modeling of packaged, integrated RF/microwave, digital, and
mixed-signal electronic systems. Methodologies for their sys-
tematic construction are currently under investigation and will
be reported in a forthcoming paper.
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