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Abstract

Finite Element Method (FEM) is considered very powerful and efficient in solving partial differential equations. Exact solution of some engineering applications, such as fluid flow analysis, is a challenging task. However, FEM can be used to model these problems and give solution near to exact by using stream function approach. In this study, FEM is employed to analyze a non-viscous incompressible fluid flow inside a pipe and then solve for the heat flow transfer through the same pipe. The fluid flow is expressed by partial differential equation (Poisson’s equation). While, heat transfer is analyzed using the energy equation. The domain is discretized using 560 elements and that corresponds to a total number of nodes 616. A four-node isoparametric quadrilateral element is used to model the domain.  The stiffness bandwidth is assured by using bandwidth reduction programs. A previously developed Matlab codes are used to perform the analysis. Results showed that both fluid flow and temperature flow are influenced significantly with changing entrance velocity. Also, there is an apparent effect on the temperature flow fields due the presence of an energy source in the middle of the domain. 
Keywords: Finite Element Method (FEM), heat transfer, Convection, Conduction, Stream Function, Energy Function, Fluid Flow, Non-viscous flow, incompressible flow.
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1. Introduction

Finite element method techniques are widely used in problems that require solution of partial differential equations. In this method of analysis, a complex region defining a continuum is discretized into simple geometric shapes called finite elements. The material properties and the governing relationships are considered over these elements and expressed in terms of unknown values at element corner. An assembly process duly considering the loading and constraints, results in a set of equations. Solution of these equations gives us the approximate behaviour of the continuum. Thompson [1] discusses solution of partial differential equations involved in areas such as Fluid Mechanics, Elasticity and Electromagnetic Field by using FEM. Details about fluid mechanics and heat transfer problems and their solution can be found in [2]. A more complex transient heat conduction equation is discussed in Winget and Hughes [3]. Similarly Johan et al.[4] and Jacob and Ebecken [5] develop step size selection schemes based on heuristic rules for  compressible Navier-Stokes equations and structural dynamics problems respectively. Convective heat transfer or, simply, convection is the study of heat transport processes by the flow of fluids. Problems related to convective heat transfer rest on basic thermodynamics and fluid mechanics principles, which essentially involved with partial differential equations.  
In this paper, a two-dimensional non-viscous incompressible steady flow problem is solved using the finite element method through solving partial differential equations of the fluid flow. The flow field of that fluid is then employed to solve the partial differential equations of temperature flow. For both fluid flow and temperature flow, boundary conditions are applied. The domain of the problem is discretized to a large number of elements to assure the accuracy of the solution. Four-node isoparametric quadrilateral elements are used to model this problem. The influence of the presence of heat source inside the domain on the temperature flow field is also studied. Analyses are done by studying both flow field and temperature field for various values of entrance velocity. Analyses show very important results, such as the temperature field in decreasing by increasing the entrance velocity.   

2. Problem Definition

A fluid passes through a domain represented by a pipe having dimensions of 20 x 50 units in the two-dimensional plan, as shown in Figure 1. The fluid flow enters from the left with a uniform velocity V, as illustrated. It flows around a small pipe located at the middle of the domain and having a diameter d = 7.5 units, as shown in Figure 1. This small pipe contains an energy source produces q units of energy per surface area of the pipe per unit time. As the fluid passes through the domain, the velocity of the fluid changes due to the presence of the small pipe at the middle. Also, due to convection phenomenon, heat energy is carried out by the fluid flow through the pipe domain. Thus, the temperature flow field changes by changing the velocity of the fluid flow. 

By assuming that the fluid is non-viscous and incompressible, both velocity and temperature fields are independent of each other. As such, the governing partial differential equations that describe the fluid flow and the temperature flow can be solved independently. The fluid flow is solved using the stream function for a specific values of entrance velocities, as will be discussed later. Once the flow is determined, the temperature flow can be established by solving temperature governing equation.
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3. Governing Equation of Two Dimensional Flow

The governing equation that govern the two-dimensional problem, in general, can be obtained from the relation


[image: image97.png]% Place completed element matrix
% in global SK and Q matrices

for J=1:NNPE
INP=NP(I,J);
JEQ=NWLD(INP) ;
RHS (JEQ)=RHS (JEQ)+QE(J) ;
for K=1:NNPE
KNP=NP(I,K);
KEQ=NWLD (KNP) ;
KB=(KEQ-JEQ)+IDIAG;
SK(JEQ,KB)=SK(JEQ,KB)+S(J,K) ;
end
end

end % Loop over elements

Specify known values of PHI

%
%

if NPBC(I)
NI=NWLD(I);
SK(NI,IDIAG)=SK(NI,IDIAG)*1.0E+06;
RHS(NI)=PHI(I)*SK(NI,IDIAG);

end

end

% Renumber solution values
% using original node numbers

NI=NWLD(I);
RHS(I)=PHI(NI);
end
for I=1:NUMNP
PHI(I)=RHS(I);
end

save PHI PHI -ASCII

JNP = global equation number for row J of
element stiffness matrix

JEQ = new row number used for bandwidth
reduction (see Appendixes A and C)

KNP = global equation number for column
K of element stiffness matrix

KEQ = new column number used for
bandwidth reduction

KB = column number in banded storage
(see Appendix A)

Decouple equations representing known ®
values by “blasting the diagonal.”

Call equation solver, NGAUSS.m, for
banded nonsymmetric matrices (see
Appendix A).

Put & values in order of original numbering.

Save @ values in file PHI

end of steady.m
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In which the coefficients 
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. S is the boundary of the domain and S1 and S2 are parts of that boundary and satisfy 
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 represent the outward normal unit vectors on the boundary. 

3.1. Governing Equation for Fluid Flow Analysis

Poisson’s equation is originated from the general governing partial differential equation and it is adequate to describe a large number of applied problems including the flow of ideal fluids problems. The two governing equations for the flow of ideal fluids are
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(Irrotational flow)


(2)
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(Incompressible flow)


(3)

If we define 
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 such that it identically satisfies the condition for incompressible flow, then we have
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(x component of the velocity)


(4)
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(y component of velocity)


(5)
By substituting equations (4) and (5) into equation (2), the stream function of the fluid flow can be written as follows
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(6)

3.2. Governing Equation for Temperature Flow Analysis 

For steady state two-dimensional convection through a constant-property homogenous fluid, the energy equation is given by (Reference 2) 
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(7)

or in other form
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(8)

Where 
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 is the temperature, k is the thermal conductivity of the fluid and 
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is the heat capacity of the fluid. 
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 denote the velocity components in x and y directions, respectively. Since the time-dependency is beyond the scope of this paper, the thermal conductivity of the fluid will be assumed to be time independent and take a constant value k = 1.0. Also, the heat capacity 
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is assumed to be equal to 1.0.

4. Finite Element Modeling
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The problem is discretized using a previously developed Matlab code mesh generator “mesh.m” provided in Reference [1].   The input data for the mesh generator are the number of generation loops and some geometric coordinates of specific points on each side of each loop. Also, the number of divisions per each side is required to specify the number of elements per each loop. In the current study, six loops are used to generate the mesh of the domain (Figure 2).  Thus, the total used number of elements is 560 elements and that corresponds to a total number of nodes 616.  A four-node isoparametric quadrilateral element is used to model the domain to maintain the continuity of the degrees of freedom along the edges of the elements. It should be noted, as shown in Figure 2, that the sizes of the elements decreases with getting closer to the small pipe at the middle to ensure the accuracy of the solution at this area of concentrated stresses. The mesh discretization provided in Figure 2 will be used in both the flow and temperature analyses. 

A Matlab user INCLUDE code denoted by NPCODE.m (provided in Reference 1) is included in mesh.m code immediately before the output is saved. The purpose of this code is to assign NPcode values to each node. These values have meaning only to the user and are not used in any of the finite element codes. However, the user can use these numbers in any other supplement code. The NPcode values are often used in the INITIAL.m Matlab user INCLUDE code (will be discussed in later section) that set boundary and initial conditions for a particular finite element analysis. The output files of the mesh generator program “mesh.m” are ASCII files; MESHo, NODES and NP. The MESHo file contains the number of nodes, number of elements, and number of nodes per element, respectively. The NODES file includes three columns and number of rows equal to the total number of nodes. The first two columns contain X and Y coordinates of each node, while that last column contains the NPcode value for each node. Finally, NP file includes the connectivity array between the elements. 

A problem encountered with the two-dimensional problem analyses is how to number the nodes such that it minimizes the storage needed for the stiffness matrix. The bandwidth of the stiffness matrix depends on the way the nodes have been numbered. Also, the difference between a good numbering scheme and a poor numbering scheme can result in a very large difference in bandwidth requirements. Since finite element equations are related to each other only through common elements, reduction of the bandwidth needs nodes that are connected by common elements be as close in numerical value as possible. A previously developed bandwidth reduction program developed using Matlab code denoted newnum.m (Provided in Reference 1) is used in the analysis to specify a new numbering scheme that is able to reduce the bandwidth of the stiffness matrix. The ASCII files that are resulted from the mesh.m program are used as input files for the newnum.m program. 

The code described in the newnum.m program begins with the specification of one or more nodes as starting nodes. The user specifies these nodes be the first nodes in the new numbering scheme. For example, if five nodes are designated, the line connecting these nodes is referred to as the first wave of nodes (Figure 3). The second wave consists of all nodes that are linked to nodes in the first wave through common elements. The nodes in the second wave are then given the next consecutive numbers in the new order. This process continues until all nodes have been given new numbers. Finally, all elements should have node numbers that differ by no more than the number of nodes in the longest two consecutive waves, and even less. The output of newnum.m program is an ASCII file denoted NWLD, which contains the new numbering scheme that will be used in the finite element analysis. 
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5. Flow Analysis

Both fluid flow and temperature flow can be described by the general equation that governs the two-dimensional problems (Equation (1)). However the coefficients of the governing Equation (1) (
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, G and H) differ from the fluid flow to the temperature flow such that they satisfy the governing equations given in Equations (6) and (8) for fluid flow and temperature flow, respectively. The previously developed Matlab program denoted steady.m is used to conduct the finite element analyses for fluid and temperature flow. The flow chart that describes this program is given in Figure 4 and the source code of the program is enclosed in Appendix I. 

5.1 Fluid Flow Analysis

The fluid flow is characterized by the Poisson’s equation given by Equation (6) and recalled here for convenience
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in which the coefficients of the general governing equation (1), 
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0.0, G = 0.0 and H = 0.0. These coefficients are incorporated in the user INCLUDE Matlab program denoted COEF.m, which is called from inside the steady.m program to define these coefficients. 

The boundary conditions for the fluid flow analysis are illustrated in Figure 5. The x-component of the velocity at the entrance and at the exit is constant. As such, integrating equation (4) for the x-component of the velocity gives the fluid flow conditions at entrance and at exit as
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(9)
in which, 
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is constant specific values for the velocity and y is the y-coordinates of the nodes in that boundary. Since, the flow is non-viscous and incompressible, the x-component of the velocity maintains constant at the upper and lower boundaries. Thus, the boundary conditions of fluid flow at upper and lower boundaries can be given by the relations;
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Where the values 10 and –10 are the y-coordinates of the nodes on upper and lower boundaries, respectively. The y-component of the velocity, i.e. 
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 , is constant and equal to zero the at entrance and the exit. Also, to maintain the non-viscosity and incompressibility of the fluid, the fluid flow at the small circular pipe at the middle of the domain is taken equal 
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. These boundary conditions are specified in the INITIAL.m Matlab program code (enclosed in Appendix II), which is called from inside the steady.m program to define the boundary conditions of the problem. Once the boundary conditions and the coefficients are defined in the steady.m program, the analysis of the fluid flow is determined. Results are obtained for different values of the entrance velocity 
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= 0.0, 0.30, 0.60 and 1.0. Figure 6 shows the flow field of the fluid at the different specified values of the entrance velocity. As illustrated from the results that the flow field is the same for all values of the velocities, however, the absolute values of the flow increases with increasing the entrance velocity. Also, it is noticed that when the velocity 
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= 0.0, the flow field is static and the stream function is constant all over the domain.
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5.2.  Temperature Flow Analysis

The temperature flow is characterized by the energy equation given by Equation (8) and recalled here for convenience
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in which the coefficients of the general governing equation (1), 
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, G = 0.0 and H = 0.0. The thermal conductivity 
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 and the heat capacity of the fluid 
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are assumed to have unit values.  The coefficients 
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are given by using equations (4) and (5) as derivatives of the fluid flow with respect to x and y, respectively. As such, a small Matlab code is incorporated in the steady.m program at the position shown in the flow chart (Figure 4) just before calling the user’s INCLUDE file COEF.m to calculate the velocity components 
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. This Matlab code is illustrated as follows;

%        -----------------------------------------

%        Calculating velocity components

%        -----------------------------------------

             for K=1:NNPE; 

               NPK=NP(I,K); 

               VP060(K,I)=VP06(NPK);

               ux1= ux1+DNDY(K)*VP060(K,I);

               uy1= uy1-DNDX(K)*VP060(K,I);  

             end  

%        ----------------------------------------      

in which NNPE is the number of nodes per element, NPK is the global numbering of each node, NP is the array of global numbering of each nodes as function of element number I and local node numbering K. The derivatives of the flow functions with respect to x and y at each node are denoted by DNDY(K) and DNDX(K), respectively. VP06(NPK) is the fluid flow function values, 
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, resulting from fluid flow analysis for entrance velocity equal 
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= 0.6 given for the global numbering of the nodes. VP060(K,I) is the two dimensional array of the fluid flow function 
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 given at each local node per each element. 
Once the velocity components 
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 are calculated, the steady.m program call for the user’s INCLUDE code COEF.m to read the rest of the coefficient as ; 
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, G = 0.0 and H = 0.0.
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The boundary conditions for the temperature flow analysis are illustrated in Figure 7. The small pipe at the middle is assumed to produce q units of energy per surface area of the pipe per unit time. The energy q is considered equal to unity at the small pipe and equal to zero at exit, lower boundary and upper boundary. The temperature flow 
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 is considered equal to zero at entrance. These boundary conditions are employed in the INITIAL.m Matlab program code (enclosed in Appendix III), which is called from inside the steady.m program to define the boundary conditions of the problem. Once the boundary conditions and the coefficients are defined in the steady.m program, the analysis of the temperature flow is ascertained. 
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Results are obtained for different values of the entrance velocity 
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= 0.0, 0.30, 0.60 and 1.0. Figure 8 shows the flow field of the temperature at the different specified values of the entrance velocity. It is noticed from the results that there is a steep decrease in the temperature field with increasing the entrance velocity. This coincides with the fact that heat transferred by convection is greater than heat transferred by conduction. Also, Figure 8 illustrates that the rate of heat transferred through the domain is increasing by increasing the velocity, which results in decrease of temperature near the heat source in the middle of the domain.  

6. Conclusions

In this study, a two-dimensional non-viscous incompressible steady flow problem is analysed using the finite element method through solving partial differential equations of the fluid flow. The fluid flow is expressed by partial differential equation (Poisson’s equation). While, heat transfer is analyzed using the energy equation. The flow field of that fluid is then used to solve the partial differential equations of temperature flow. The domain of the problem is discretized to a large number of four-node isoparametric elements to assure the accuracy of the solution. The influence of the presence of heat source inside the domain on the temperature flow field is also investigated. Analyses are done by studying both flow field and temperature field for various values of entrance velocity. Results showed that both fluid flow and temperature flow are influenced considerably by changing entrance velocity. Also, there is an obvious effect on the temperature flow field due the presence of an energy source in the middle of the domain. 
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Appendix I   

(steady.m Matlab Code)
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Appendix II   

Fluid Flow Analysis

· INITIAL.m Matlab code

%-------------------------------

%    INITIAL.m

%

%    Set problem parameters.

%-------------------------------

      for Ix=1:NUMNP

        if NPcode(Ix) == 1    %Left Boundary


   NPBC(Ix)=1;

       QS(Ix)=0;

       HS(Ix)=0;


   PHI(Ix) = YORD(Ix)*0.6;       % 0.6 is the velocity 

       Q(Ix)=0;

        elseif NPcode(Ix)==2  % Bottom Boundary


   NPBC(Ix)=1;

       QS(Ix)=0;

       HS(Ix)=0;


   PHI(Ix) = -10*0.6;           % -10 is Y-Coord at bottom & 0.6 is the velocity               

       Q(Ix)=0;

        elseif NPcode(Ix)==3  % Right Boundary


   NPBC(Ix)=1;

       QS(Ix)=0;

       HS(Ix)=0;


   PHI(Ix) = YORD(Ix)*0.6;       % 0.6 is the velocity 

       Q(Ix)=0;

        elseif NPcode(Ix)==4   %Top Boundary


   NPBC(Ix)=1;

       QS(Ix)=0;

       HS(Ix)=0;


   PHI(Ix) = 10*0.6;           % 10 is Y-Coord at top & 0.6 is the velocity        

       Q(Ix)=0;

        elseif NPcode(Ix)==5   %Circular Pipe


   NPBC(Ix)=1;

       QS(Ix)=0;

       HS(Ix)=0;


   PHI(Ix) = 0;

       Q(Ix)=0;

        end

      end

%---------------------------------------

· COEF.m Matlab code

%-------------------------------

%    COEF.m

%

%    Set Equation Coefficients.

%-------------------------------

    RXJ = 1.0; 

    RYJ = 1.0; 

    BXJ=0;

    BYJ=0;

    GVJ = 0;

    HVJ = 0;

    %--------------------------------------

Appendix III   

Temperature Flow Analysis

· INITIAL.m Matlab code

%-------------------------------

%    INITIAL.m

%

%    Set problem parameters.

%-------------------------------

      for Ix=1:NUMNP

        if NPcode(Ix) == 1    %Left Boundary


  NPBC(Ix)=1;

       
  QS(Ix)=0;

              HS(Ix)=0;


  PHI(Ix) = 0;       

             Q(Ix)=0;

        elseif NPcode(Ix)==2  % Bottom Boundary


  NPBC(Ix)=0;

             QS(Ix)=0;

             HS(Ix)=0;


 PHI(Ix) = 0;               

             Q(Ix)=0;

        elseif NPcode(Ix)==3  % Right Boundary


 NPBC(Ix)=0;

             QS(Ix)=0;

             HS(Ix)=0;


 PHI(Ix) = 0; 

             Q(Ix)=0;

        elseif NPcode(Ix)==4   %Top Boundary


 NPBC(Ix)=0;

             QS(Ix)=0;

             HS(Ix)=0;

             PHI(Ix) = 0;       

             Q(Ix)=0;

        elseif NPcode(Ix)==5   %Circular Pipe


 NPBC(Ix)=0;

             QS(Ix)=1;

             HS(Ix)=0;


 PHI(Ix)=0;

             Q(Ix)=0;

        end

      end

%---------------------------------------

· COEF.m Matlab code

%-------------------------------

%    COEF.m

%

%    Set Equation Coefficients.

%-------------------------------

    RXJ = 1.0; 

    RYJ = 1.0; 

    BXJ=-ux1;

    BYJ=-uy1;

    GVJ = 0;

    HVJ = 0;

%-------------------------------

q
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Figure 1 Steady Flow System Definition.





Figure 2 Mesh Discretization of the Domain (560 elements and 616 nodes).
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Figure 3 Wave Fronts for New Numbering Scheme (Green is first wave and red dot is last node).





Figure 5  Boundary Conditions of the Fluid Flow.
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Figure 6 Fluid Flow Field for Different Values of Entrance Velocity.
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Velocity components for Temperature flow case





Figure 4 Flow Chart of steady.m Program





Figure 7 Boundary Conditions of the Temperature Flow.
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Figure 8 Temperature Flow Field for Different Values of Entrance Velocity
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[image: image82.jpg]Fluid Flow for V = 0.30
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[image: image84.jpg]Fluid Flow for V = 0.60
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[image: image86.png]LOAD files from mesh.m and newnum.m

User-written INITIAL.m
o initialize problem parameters

Function: SFquad.m to create SF amray

FOR all elements in mesh

FOR all quadrature points in element

User-written COEF.m

Determine quadrature contribution to [S] and {QE}

END loop over quadrature points

FOR all sides of element

FOR all quadrature points on surface

Calculate contributions to [S) and {QE}

END loop over quadrature points
END loop over sides
END loop over elements

Assemble [S] and {QE} into global matrices

Specify known values of PHI

Function: nGAUSS.m to solve [SK]{PHI] = {RHS}
Save {PHI) values




[image: image87.jpg]Temperature field for V = 0.0




[image: image88.jpg]Temperature field for V = 0.30




[image: image89.jpg]Temperature field for V = 0.60




[image: image90.jpg]Temperature field for V = 1.0
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% PROGRAM steady.m

Qe ke AR

Toad MESHo  -ASCII
Toad NODES  -ASCII
Toad NP -ASCII
Toad NWLD -ASCII

NUMNP
NUMEL
NNPE

MESHo(1) ;
MESHo(2) ;
MESHo(3);

for I=1:NUMNP;
XORD(I)=NODES(I,1);
YORD(I)=NODES(I,2);
NPcode (I)=NODES(I,3);
end

Determine bandwidth and
diagonal column for
nonsymmetric storage

WR R R R

IB = NWLD(NUMNP+1);
IDIAG=IB;
8 = 2*IB-1;

if NNPE == 3

==16

elseif NNPE == 4
NSPE=4;
NNP.

elseif NNPE == 8
NSPE=4;
NNPS=3;

end

Load data from mesh.m and newnmu.m.
All four files must be in working directory.

File Contents
MESHo NUMNP, NUMEL, NNPE
NODES XORD, YORD, NPBC
NP NP array
NWLD  New nodal numbers

Last entry is IB
Variable  Definition
NUMNP  Number of nodal points
NUMEL Number of elements
NNPE Number of nodes per element
XORD Node’s x coordinates
YORD Node’s y coordinates
NPcode  User’s identification code

for each node

Convert IB from newnum.m to IB for a
nonsymmetric matrix. IDIAG is column
number for diagonal terms. See Appendix B
for addition information.

In MATLAB, pi = , but in other languages
it must be set.

Variable Definition

NNPE Number of nodes per element
NSPE Number of sides per element
NNPS Number of nodes per side




[image: image92.png]for I=1:NUMNP;
Q(I)=0;
QS(I)=0;
HS(I)=0;
PHI(I)=0;
NPBC(i)=0.0;
end

for I=1:NUMNP
for J=1:18
SK(I,1)=0;
end
end

disp(' ')

disp('ENTER: ')

disp('=m=mmmmm e 9
disp('0 for 2D rectangular' )

disp('1l for axi-symmetric about x-axis')
disp('2 for axi-symmetric about y-axis')
disp(’
IRZ = input(’ < *);

VERTRZE< 0S| TRZE>52

disp('=mmmmmmmmmmmmmmmm e 9
disp('ERROR IN INPUT ' )
disp('IRZ has been set to 0')
disp('=mmmmmmmmmmmmmm e e 9
IRZ = 0;

end

% o

% Include user-written initialization
s
INITIAL

Variable Definition

Q Qof [K}{®} = {0}

Qs Nodal values of surface flux, g;
HS Nodal value of Cj, in Eq. 9.24
PHI Nodal values of &

NPBC  Nodal point boundary condition

SK Global stiffness matrix

steady.m can analyze:

(1) Two-dimensional problems in rectangular
coordinates.

(2) Problems that are axisymmetric about

the x axis, hence two-dimensional.

(3) Problems that are axisymmetric about

the y axis, hence two-dimensional.

If user does not enter 0, 1. or 2, default to 0.

SFquad.m is the function that initializes
the shape factor array, SF, according to
the element type specified by NNPE, the
number of nodes per element. The values
are calculated at each quadrature point

to expedite the numerical integration. See
Appendix D for complete details.

INITIAL.m: User-written INCLUDE code
to set all boundary conditions using the
NPcode numbers for each node or other
user-written logic.
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%

for I=1:NUMNP
RHS (NWLD(I))=Q(I);
end

for I=1:NUMEL;
LMENT=I;
for J=1:NNPE;
QE(3)=0.0;
for K=1:NNPE;
S(3,K)=0;
end
end

JEND=NUMQPT (1) ;

for J=1:JEND;
X1=0;
Yi=0;
RJAC(1,D)
RJAC(1,2)
RJAC(2,1)
RJAC(2,2)

(RN e

ocoo9o

for K=1:NNPE;
NPK=NP(I,K);
XJ=XJ+SF(1,K, J) *XORD(NPK) ;
Y1=YJ+SF(1,K, J)*YORD(NPK) ;

RJAC(1,1)=RIAC(L,1)+...
SF(2,K,J3)*XORD(NPK) ;
RJAC(1,2)=RIAC(1,2)+...
SF(3,K,J)*XORD(NPK) ;
RIAC(2,1)=RIAC(2,1)+...
SF(2,K,J)*YORD(NPK) ;
RIAC(2,2)=RIAC(2,2)+...
SF(3,K,3)*YORD(NPK) ;
end

DETJ=RJAC(1,1)*RIAC(2,2)...
-RIAC(2,1)*RIAC(1,2);

Place specified nodal sources on right-hand
side using new numbering for compact
storage.

Begin compiling global stiffness matrix
element by element.

Initialize element right-hand side.

Initialize element stiffness matrix.

Begin Gaussian quadrature for current
element.

Initialize:
XJ and YJ: coordinates of quadrature point
RJAC(L,J): Jacobian matrix

Determine:
= [VKx}
= [NKY}
dx Jdx
J(x.y)}= u v
wn ] oy oy
du v

_ [[&N/duj {X} |9aN/av[{X}

|ON10ul{Y} |ON/dv|{Y}
ax ax
DETJ = du v
) )
du  dv
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if DET) <= O

fprintf(1, "\n- -
fprintf(1,'\n Error in steady.m ')
fprintf(1,'\n DET) =%7e',DET] D)
fprintf(1,'\n must be > 0.0' )
fprintf(l, *\n---=ceccmec——- \n')
error

end

Determine inverse of Jacobian
RJACI(1,1)=+RJAC(2,2)/DET];

RJACI(1,2)=-RJAC(1,2)/DET];
RJACI(2,1)=-RJAC(2,1)/DET.
RJACI(2,2)=+RJAC(1,1)/DET];

Determine derivative of shape
functions in X-Y plane

for K=1:NNPE;
DNDX(K)=RJACI(1,1)*SF(2,K,D)+...
RIACI(2,1)*SF(3,K,1);
DNDY (K)=RJACI(1,2)*SF(2,K,D)+...
RIACI(2,2)*SF(3,K,1);

end

Include user-written coefficients
RXJ, RYJ, BXJ, BYJ, GV], HV]

DV=DETJ;

if IRZ ==
DV=2.0*PI*YJ*DV;

elseif IRZ ==
DV=2.0*PI*XJ*DV;

end

‘The sign of the determinant of the

Jacobian matrix is based on counterclockwise
numbering of the element nodes in the NP
array. If this has been followed, and the
determinant is less than or equal to zero,

the mapping from parent element to

current element is not proper. The current
element has either been wrongly defined
are is too distorted to use. Program is

stopped.

du  du ax ax1!
dx dy du v
dv  dv dy dy
ax dy du  dv

N du  dv][aN
ax ax ox||au
IN du dv||aN

dy dy ayllav

COEF.m is a user INCLUDE code that
defines RX, RY, BX, BY, G, and H at the
current quadrature point. See test problem
for an example of COEF.m.

Account for type of analysis: (IRZ = 0)
rectangular, (IRZ = 1) axisymmetric
about x axis, and (IRZ = 2) axisymmetric
about y axis.




[image: image95.png]for K=1:NNPE;
QE(K)=QE(K)+WT (1,3)*SF(1,K, ) *HVI*DV;

SFK=SF(1,K,J);
for L=1:NNPE;
SFL=SF(1,L,J);

SCK,L)=S(K,L) + WT(1,D*(...
DNDX(K)*RXJ*DNDX(L) ...
+DNDY (K) *RYJ*DNDY (L) ...

-SFK*BXJ*DNDX (L) o
-SFK*BYJ*DNDY(L) ...
-SFK*GVI*SFL) *DV;
end
end
end
R end of volume quadrature

NNPS;

(I,NPSIDE(J,K));

HKH*HS (J1) ;
CHKQ=CHKQ*QS(J1) ;

end

if CHKH ~= 0 | CHKQ ~= 0
KEND=NUMQPT(2) ;
for K=1:KEND;
YK =0.0;
XK =0.0;
dxdu =0.0;
dydu =0.0;
PHIK =0.0;
HSK =0.0;
QsK =0.0;

At this point in the code we are in
element / at quadrature point J. All
parameters and terms that appear in the
integrand for the stiffness matrix and
the right-hand side associated with the
volume integration have been defined
or calculated. These are

Integrand Equation

[NTTIRIIN  9.52
{MBINT  9.53
{N)GIN| 9.54
{N}H 9.56

We are still in element / and are ready
to search all of its sides to determine
if any one of them represents an
exterior surface for which a numerical
integration must be performed. The
check is made by examining the
nodal point values of g; and h, at all
nodes associated with each side. A
single nodal value of zero for gy, or i
indicates that quantity should not be
integrated.

Search each side. NSPE = number of
sides per element.

Inspect each node. NNPS = number of
nodes per side.

If either CHKH or CHKQ is nonzero,
then a surface integration by Gaussian
quadrature is begun. If not, then the
next side is examined until all sides
have been considered.

Initialize variables used in quadrature.

Variable Definition

XK, YK x and y coordinates
dxdu, dydu  dx/du and dy/du
PHIK &, in Eq. 9.24
HSK C;inEq.9.24
QSK q"inEq.9.2




[image: image96.png]for L=1:NNPS;
L1=NPSIDE(J,L);
NPL=NP(I,L1);
XK =XK  +SF(4,L,K)*XORD(NPL);
YK =YK +SF(4,L,K)*YORD(NPL);
dxdu =dxdu +SF(5,L,K)*XORD(NPL) ;
dydu =dydu +SF(5,L,K)*YORD(NPL) ;
QSK =QSK +SF(4,L,K)*QS(NPL);
HSK =HSK +SF(4,L,K)*HS(NPL);
PHIK =PHIK +SF(4,L,K)*PHI(NPL);

end

dsdu = sqrt(dxduA2 + dyduA2);

duds = 1/dsdu;

DS=dsdu;

if IRZ ==
DS=2.0*PI*YK*DS;

elseif IRZ == 2
DS=2.0*PI*XK*DS;

end

for L=1:NNPS;
L1=NPSIDE(J,L);
if CHKQ ~= 0
QE(L1)=QE(LL)+WT(2,K)*...
SF(4,L,K)*QSK*DS;
end

if CHKH ~= 0
QE(L1)=QE(LL)+WT(2,K)*...
SF(4,L,K)*HSK*PHIK*DS;
for M=1:NNPS;
M1=NPSIDE(],M);
S(L1,M1)=S(L1,M1) + WT(2,K) ...
*SF(4,L,K)*HSK*SF(4,M,K)*DS;
end
end

end

CHKQ and/or CHKH indicates that
numerical integration of one or both of
the following integrals is needed:

[ {NJC(@a — D) ds
(Eqgs. 9.58 and 9.55)

| {NsYg(s)ds
(Eq.9.5T)

Determine quadrature values of

x y dxldu dyldu gq; h @,

dsldu = J(dx/du)? + (dyldu)*

dulds = (ds/du)™"

Calculate differential surface area.

[{NJads

[{N}hDads

| (NhIN)ds

end % surface quadrature
end % if-statement for quadrature

end % loop over element sides
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