
Solution: Problem 9P4

NOTE: This problem allows students to experience the ease with which finite element
programs can be used to solve very complex problems. In this case, all that is necessary
is that they have confidence in how to use the INCLUDE files. This, in turn, builds
confidence in them to edit the main codes to their advantage when working other types of
problems. I highly recommend this project as one of the more interesting ones for students
to undertake.

As is stated in the text, two analyses are necessary, (1) the flow of an ideal fluid, and (2)
a steady state temperature field. The first analysis is the same as Project 2 in Chapter 7.
If this was assigned, students should use some of the work from that project for this one.

The first step will be to create a mesh. The same mesh will be used for both of the analyses
- in fact, this is essential.

Creating the MESH

A mesh of four node elements was created using the LOOPS shown. The arrows indicate
the LOOP side that was selected as Side 1.

−25 −20 −15 −10 −5 0 5 10 15 20 25

−15

−10

−5

0

5

10

15

20

25

1

2

3

4

5

−25 −20 −15 −10 −5 0 5 10 15 20 25

−15

−10

−5

0

5

10

15

20

25

%-----------------------

% NUMLPS NNPE

%-----------------------

5 8

%-----------------------

% NDIV-1 NDIV-2

%-----------------------

10 10

10 10

10 15

10 10

10 10

% ----------------------

% The JOIN array

% ----------------------

0 0 0 0 0 0 0 0

1 3 0 0 0 0 0 0

2 2 0 0 0 0 0 0

0 0 3 3 0 0 0 0

4 3 0 0 0 0 0 0

The COORD data file is shown on the next page.

%-----------------------------------

% LOOP Coordinates (8 per loop)

%-----------------------------------

25 0

25 5

25 10

17.5 10

10 10

10 5

10 0

17.5 0

%-----------------------------------

10 0

10 5

10 10

6.3258 6.3258

2.6516 2.6516

3.4677 1.4350

3.75 0

6.875 0

%-----------------------------------

2.6516 2.6516

6.3258 6.3258

10 10

0 10

-10 10

-6.3258 6.3258

-2.6516 2.6516

0 3.75

%-----------------------------------

-3.75 0

-3.4677 1.4350

-2.6516 2.6516

-6.3258 6.3258

-10 10

-10 5

-10 0

-6.875 0

%-----------------------------------

-10 0

-10 5

-10 10

-17.5 10

-25 10

-25 5

-25 0

-17.5 0

%-----------------------------------

The user written NPCODE.m INCLUDE code is on the next page.

%---------------------------------------

% NPCODE - user written INCLUDE code.

%---------------------------------------

% -------------------------------------

% LOOP 1

% -------------------------------------

n = NNPS-1; % NNPS = number of nodes

% per side of element

IEND = n*NDIV(1,1)+1; % side 1

for I=1:IEND

NI=LNP(1,1,I);

NPcode(NI)=11;

end

IEND = n*NDIV(1,2)+1; % side 2

for I=1:IEND

NI=LNP(1,2,I);

NPcode(NI)=12;

end

IEND = n*NDIV(1,4)+1; % side 4

for I=1:IEND

NI=LNP(1,4,I);

NPcode(NI)=14;

end

% -------------------------------------

% LOOP 2

% -------------------------------------

IEND = n*NDIV(2,4)+1; % side 4

for I=1:IEND

NI=LNP(2,4,I);

NPcode(NI)=24;

end

IEND = n*NDIV(2,3)+1; % side 3

for I=1:IEND

NI=LNP(2,3,I);

NPcode(NI)=23;

end

% -------------------------------------

% LOOP 3

% -------------------------------------

IEND = n*NDIV(3,2)+1; % side 2

for I=1:IEND

NI=LNP(3,2,I);

NPcode(NI)=32;

end

IEND = n*NDIV(3,4)+1; % side 4

for I=1:IEND

NI=LNP(3,4,I);

NPcode(NI)=34;

end

% -------------------------------------

% LOOP 4

% -------------------------------------

IEND = n*NDIV(4,4)+1; %side 4

for I=1:IEND

NI=LNP(4,4,I);

NPcode(NI)=44;

end

IEND = n*NDIV(4,1)+1; %side 1

for I=1:IEND

NI=LNP(4,1,I);

NPcode(NI)=41;

end

% -------------------------------------

% LOOP 5

% -------------------------------------

IEND = n*NDIV(5,2)+1; %side 2

for I=1:IEND

NI=LNP(5,2,I);

NPcode(NI)=52;

end

IEND = n*NDIV(5,3)+1; %side 3

for I=1:IEND

NI=LNP(5,3,I);

NPcode(NI)=53;

end

IEND = n*NDIV(5,4)+1; %side 4

for I=1:IEND

NI=LNP(5,4,I);

NPcode(NI)=54;

end

In the above, the NPCODE numbers correspond to (loop side); hence, NPCODE = 34
means it is a node on side 4 of LOOP 3. These numbers are sufficient to specify all
boundary conditions needed for the two analyses.

newnum numbering

The mesh numbering gives a bandwidth equal to 122; hence, newnum.m should be able to
improve that. Several attempts were made using different initial waves, but 33 seems to
be about the minimum bandwidth possible. This can be obtained from several starting
waves, but the simplest is starting with only one node, and specify that as the original
node 1. The waves are then:

−25 −20 −15 −10 −5 0 5 10 15 20 25

−15

−10

−5

0

5

10

15

20

25

Wave Fronts: Green is initial front. Red dot is last node

ENTER:

1 node numbers for first wave

<---

wave node 1 < 1

Bandwidth

IB = 33

Symmetric: Bandwidth = DOF*IB

NonSymmetric: Bandwidth = 2*DOF*IB-1

DOF = degrees of freedom per node

Flow Analysis

To conduct the flow analysis of a perfect fluid, we used the stream function approach so
that

∂Φ

∂y
= u velocity in x direction

∂Φ

∂x
= v velocity in y direction

The velocity normal to all boundaries are known; hence, the derivative of Φ along these
boundaries is known. On the top and lower boundaries, the derivative will be zero; hence,
the value of Φ will be constant. On the left (entrance) boundary, and the right (exit)
boundary, the derivative will be equal to the entrance and exit velocities, which we specify
as unity; hence, the derivative of Φ along these boundaries will be unity. If we specify Φ
values on all boundaries other than the pipe, as the y coordinate, and the values around the
pipe as zero, then it will meet these boundary conditions. The following figure illustrates
these boundary conditions, where the lower boundary is assumed to have a y coordinate
of zero (see mesh). The upper boundary has a y coordinate equal to 10.

= 10

Φ = 0

Φ

The INCLUDE codes, INITIAL.m and COEF.m are shown on the next page.

%----------------------------------

%//////////////////////////////////

%----------------------------------

% INITIAL.m

%

% Initialize arrays and specify

% boundary conditions for program

% steady.m

%

% For use for the flow analysis.

%----------------------------------

for I=1:NUMNP

if NPcode(I) == 11

NPBC(I) = 1;

PHI(I)=YORD(I);

elseif NPcode(I) == 12

NPBC(I) = 1;

PHI(I)=YORD(I);

elseif NPcode(I) == 14

NPBC(I) = 1;

PHI(I)=YORD(I);

elseif NPcode(I) == 23

NPBC(I) = 1;

PHI(I)=0;

elseif NPcode(I) == 24

NPBC(I) = 1;

PHI(I)=YORD(I);

elseif NPcode(I) == 32

NPBC(I) = 1;

PHI(I)=YORD(I);

elseif NPcode(I) == 34

NPBC(I) = 1;

PHI(I)=0;

elseif NPcode(I) == 41

NPBC(I) = 1;

PHI(I)=0;

elseif NPcode(I) == 44

NPBC(I) = 1;

PHI(I)=YORD(I);

elseif NPcode(I) == 52

NPBC(I) = 1;

PHI(I)=YORD(I);

elseif NPcode(I) == 53

NPBC(I) = 1;

PHI(I)=YORD(I);

elseif NPcode(I) == 54

NPBC(I) = 1;

PHI(I)=YORD(I);

end

end

%-------------------------------------*

% *

% COEF.m *

% *

% d d@ d d@ d@ d@ *

% --(RX--)+--(RY--)+BX--+BY--+GV+HV=0 *

% dx dx dy dy dx dy *

% *

%-------------------------------------*

RXJ = 1;

RYJ = 1;

BXJ=0;

BYJ=0;

GVJ = 0;

HVJ = 0;

After this analysis, you need to save the Φ values in another file which you will load for
the temperature analysis. The name of the file I chose was VP.

A plot from topo.m of the stream lines is shown on the next page.

−25 −20 −15 −10 −5 0 5 10 15 20 25
−20

−15

−10

−5

0

5

10

15

20
Stream lines

The temperature analysis

Now that we have the streamline function Φ, we can calculate the velocity at any point in
our mesh; thus we will be able to perform the steady state temperature analysis.

The boundary conditions for the temperature analysis are known temperature equal to
zero at the entrance (left hand boundary) and no heat transfer by conduction at the exit
(right hand end). The top boundary is assumed insulated, and there is no heat transfer
across the bottom boundary which is a plane of symmetry. The boundary that represents
the pipe, is given a uniform flux equal to unity.

Note: when the entrance temperature is set to zero, very small oscillations around zero
near the entrance cause program topo.m to plot many zero level contours. For that reason,
I chose to 0.0001.

Program INITIAL.m loads the streamline values found from our previous analysis. These
values, in the array VP, are used in COEF.m to calculate the velocity at each quadrature
point. These velocities are used to in the calculation of the coefficients BX and BY in our
equation. The user written codes INITIAL.m and COEF.m are:

%----------------------------------

%//////////////////////////////////

%----------------------------------

% INITIAL.m

%

% Initialize arrays and specify

% boundary conditions for program

% steady.m

%

% For the temperature analysis.

%----------------------------------

load VP

for I=1:NUMNP

if NPcode(I) == 23

NPBC(I) = 0;

QS(I)=1;

elseif NPcode(I) == 34

NPBC(I) = 0;

QS(I)=1;

elseif NPcode(I) == 41

NPBC(I) = 0;

QS(I)=1;

elseif NPcode(I) == 53

NPBC(I) = 1;

PHI(I)=0.0001;

else

NPBC(I) = 0;

end

end

%-------------------------------------*

% *

% COEF.m *

% *

% d d@ d d@ d@ d@ *

% --(RX--)+--(RY--)+BX--+BY--+GV+HV=0 *

% dx dx dy dy dx dy *

% *

%-------------------------------------*

RXJ = 1;

RYJ = 1;

VX=0;

VY=0;

for i=1:NNPE

PHIi=VP(NP(LMENT,i));

VX=VX+DNDY(i)*PHIi;

VY=VY-DNDX(i)*PHIi;

end

vFac =0.3;

RhoCp=1.0;

BXJ=-vFac*RhoCp*VX;

BYJ=-vFac*RhoCp*VY;

GVJ = 0;

HVJ = 0;

Note that the streamline values, V C are for a unit velocity entering the system. For any
other velocity, their value should be multiplied by the value desired. In the case shown,
it was desired to have an entrance velocity of 0.3, hence vFac was set equal to this value.
The maximum temperatures for each case are:

Velocity Max. Temp.

0.0 34.778

0.3 6.643

0.6 4.747

1.0 3.888

The color plots of the temperature fields from topo.m are shown on the next two pages.

