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of dimensionn onto the firstn0 coordinates. Thus the triangular struc-
ture simplifies the evaluation of this nested family of models for model
order selection.
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Boundary Control of an Unstable Heat Equation Via
Measurement of Domain-Averaged Temperature

Dejan M. Bǒsković, Miroslav Krstić, and Weijiu Liu

Abstract—In this note, a feedback boundary controller for an unstable
heat equation is designed. The equation can be viewed as a model of a thin
rod with not only the heat loss to a surrounding medium (stabilizing) but
also the heat generation inside the rod (destabilizing). The heat genera-
tion adds a destabilizing linear term on the right-hand side of the equation.
The boundary control law designed is in the form of an integral operator
with a known, continuous kernel function but can be interpreted as a back-
stepping control law. This interpretation provides a Lyapunov function for
proving stability of the system. The control is applied by insulating one end
of the rod and applying either Dirichlet or Neumann boundary actuation
on the other.

Index Terms—Backstepping, boundary control, distributed parameter
systems, heat equation, stabilization.

I. INTRODUCTION

In this note, a problem of temperature stabilization by means of feed-
back boundary control is addressed for a model of a thin rod that takes
into account not only the loss of heat to a surrounding medium but also
the destabilizing heat generation inside the rod. The main result is the
development of the firstbackstepping[6] control law involving infin-
itely many steps for a PDE. An inherent danger in applying infinitely
many steps of backstepping is that the feedback gains may go to in-
finity. This is prevented here by choosing the transformed system in a
special way which not only makes the feedback kernel a continuous
function but also a known, closed-form function.

The idea of applying boundary conditions in the form of state feed-
back is not new. Some of the results on feedback stabilization of para-
bolic equations include work of Triggiani [11] who analyzed the case of
a general parabolic equation defined on a bounded domain. Employing
a semigroup approach, Triggiani obtained feedback boundary condi-
tions, expressed as a specified feedback of the solution, that guarantee
exponential decay of the solution ast ! 1 even for the case when
the open loop system is unstable. The obtained result holds in higher
dimensions and the only assumptions made are that an algebraic (full
rank) condition at the unstable eigenvalues is assumed to hold, and that
either Dirichlet or mixed boundary conditions are prescribed every-
where on the boundary. The result by Triggiani [11] can be extended to
the case of mixed boundary conditions without much difficulty [1]. We
use such an extended version of the controller from [11] in our com-
parison study.

Motivated by models appearing in quasistatic theory of thermoelas-
ticity (entropy of the system satisfies the heat equation), Day [5] ana-
lyzed the behavior of solutions of the one-dimensional heat equation
(and more general types of one-dimensional parabolic equations) with
boundary conditions given as weighted integrals of the state variable
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over the entire domain. The boundary conditions, although not explic-
itly stated by the author, were actually given in the form of the state
feedback. Although the final result is given for a more general para-
bolic equation than the one we analyze in this note, it is always as-
sumed that the coefficient multiplying the linear term has a favorable
sign (enhances the overall stability of the system), which is not neces-
sary in our case.

More recent results on the subject of feedback control of systems
described by parabolic partial differential equations, and particularly
thermal processes, include the work of Burns and Rubio [2]. Using the
results from Burns, Rubio, and King [3], they analyzed the feedback
operators obtained as solutions of algebraic Ricatti equations arising
from infinite dimensional LQR/LQG control problems. Based on the
numerical results for the case of a two-dimensional (2-D) heat equation,
Burns and Rubio concluded that functional gains, i.e., kernel functions
appearing in integral representations of feedback operators, exist and
have compact support near the boundary where the control is applied.
The idea is then to use that information as a guidance for optimal place-
ment of discrete sensors.

We analyze the most general case when the effects of the heat loss
and the heat generation are significant and have to be modeled. In this
case the system can have only one constant temperature distribution
along the rod which can be either stable or unstable, depending whether
the heat loss dominates the effect of heat generation or not. In this note
we focus on the “unstable” heat equation (heat generation dominates
the heat loss) for which we will be able to design a control law that
stabilizes the system.

The control objective is achieved by applying either Dirichlet or
Neumann boundary control on one end and insulating the other. In ad-
dition, for the unstable heat equation analyzed, which in terms of di-
mensionless temperatureu(x; t) has the formut = uxx + �u, where
subscripts denote partial derivatives, an exact range of thepositivepa-
rameter� multiplying the linear term for which the system can be sta-
bilized is found. An appropriately constructed nonsingular coordinate
transformation, a special application of infinite dimensional backstep-
ping [6], will allow us to convert the original system into a new set of
coordinates where we can design a control law that achievesstabiliza-
tion using homogeneous boundary control.

II. PROBLEM STATEMENT

Let us consider the problem of heat conduction in a rod of small
cross-section. It is assumed that the rod is so thin that the temperature at
all points of the section may be taken to be the same. The homogeneous
rod has lengthL, constant area of cross-sectionA, perimeterp, density
�, specific heatc, conductivityK and diffusivity k. We assume that
each element of the surface of the rod loses the heat to a surrounding
medium by radiation and, in addition, the heat is generated inside the
rod due to constant electric current flowing through the rod. LetH be
the surface conductance (emissivity) of the rod,i the strength of the
current and�e electrical resistivity, i.e., the resistance per unit cross-
section per unit length. The temperature of the surrounding medium
and all the properties of the system, except the electric resistivity�e, are
assumed to be constant. The electric resistivity�e is changing linearly
with the temperature as�e(T ) = �e(T1)(1 � �e(T � T1)), where
T1 stands for the temperature around which the�e is linearized, and
�e is thermal coefficient of electric resistivity. It should be noted that,
depending on the nature of the material the rod is manufactured from
(conductor, semi-conductor, superconductor, composite, etc.) and the
operating temperature range, the parameter�e can be either negative
or positive. The heat equation now becomes (see [4, Ch. IV])

T (l; t)t = kT (l; t)ll � �(T (l; t)� T0) +B(1� �e(T (t; l)� T1))
(2.1)

whereT0 is the temperature of the surrounding medium into which the
rod radiates,k = K=�c; � = Hp=c�A andB = (i2=c�A2)�e(T1).

Define the dimensionless length, time and temperature variables, re-
spectively, as

x =
l

L
; � =

t

L2

k

; u =
T � Te
Te

;

where

Te = T0 +B
�e(T1 � T0)� 1

B�e � �

stands for the constant equilibrium temperature distribution along the
rod andx 2 [0; 1]. Finally, the nondimensional form of the equation
(2.1) becomes

u(x; � )� = u(x; � )xx + �u(x; � ) (2.2)

where

� =
L2(B�e � �)

k
:

Since the thermal coefficient of electric resistivity is approximately

�e � �
1

250

1

K

(see [10, Ch. VI]) for the most conductors at the room temperature (re-
sistivity for the most conductors linearly increases with temperature),
we will always have� < 0 for that case. For semiconductors, on the
other hand, dependence of the electric resistivity on temperature is gov-
erned by an exponential relation (resistivity at the temperatures close
to room temperature exponentially decreases with temperature), which
when linearized gives�e > 0 and typically 10–100 times as big as for
conductors. Therefore, depending on the geometry of the rod and the
magnitude of the currenti; � can be both positive or negative for the
rod made of semiconductor material. For the case when heat generation
inside the rod can be neglected the nondimensional form of the system
is just a special case of the equation (2.2) for� = 0 (see [9, Ch. I] for
details).

III. M AIN RESULT

Consider the nondimensionalized heat equation (2.2) with boundary
condition prespecified atx = 0 only

ut = uxx + �u in (0; 1)� (0; 1);

ux(0; t) = 0 in (0; 1);

u(x; 0) = u0(x) in (0; 1)

(3.1)

where the constant� � 0 is a constant parameter,u0(x) denotes the
initial data and the nondimensional time variable� has been replaced
with t for convenience. Under the homogeneous Dirichlet boundary
condition atx = 1 (u(1; t) = 0 in (0; 1)), equation (3.1) is unstable
if � > �2=4 since, for� = 0; �2=4 is the first eigenvalue of (3.1)
with u(1; t) = 0. This becomes obvious if we introduce a new vari-
ablev(x; t) = u(x; t)e��t. Therefore, a natural question to ask is:
Can one find a Dirichlet boundary feedback control lawu(1; t) that
exponentially stabilizes the system (3.1) if� > �2=4?

Using a Lyapunov design, we indeed obtain a Dirichlet boundary
feedback law that achieves exponential stability of the closed-loop
system

ut = uxx + �u in (0; 1)� (0; 1);

ux(0; t) = 0 in (0; 1);

u(1; t) = �a tan(a)
1

0

u(�; t) d� in (0; 1);

u(x; 0) = u0(x); u0x(x) = 0 in (0; 1):

(3.2)
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Theorem 3.1:Assume that

� 2 0;
3�2

4

and

a 2 max 0; sgn
�

2
�
�2

8

�

2
�
�2

8
;

�

2
:

1) For arbitrary initial datau0(x) 2 C(0; 1); u0x(0) = 0, (3.2)
has a unique classical solution that satisfies the followingL2

exponential stability estimate:

ku(t)k �Mku0ke�((� =4)+2a ��)t (3.3)

whereM is a positive constant independent ofu0.
2) For arbitrary initial datau0(x) 2 H1(0; 1); u0x(0) = 0, equa-

tion (3.2) has a unique strong solution that satisfies the following
H1 exponential stability estimate:

ku(t)kH �Mku0kH e�((� =4)+2a ��)t=2 (3.4)

whereM is a positive constant independent ofu0.

IV. PROOF OF THEMAIN RESULT

Proof of Theorem 3.1:To prove the Theorem 3.1 let us first con-
sider the equation

wt = wxx � c(x)w in (0; 1)� (0; 1);

wx(0; t) = 0; w(1; t) = 0 in (0; 1);

w(x; 0) = w0(x); w0
x(x) = 0 in (0; 1)

(4.1)

with

c(x) = ��+ 2
a2

cos2(ax)
: (4.2)

It can be shown that the system (4.1) is exponentially stable if
min0�x�1 c(x) = c(0) = �� + 2a2 > �(�2=4), which is satisfied
under the conditions on� anda stated in the theorem. Thus, if we can
find an invertible coordinate transformation to transform (3.2) into
(4.1), then the Theorem 3.1 is proven.

Lemma 4.1: The coordinate transformation

w(x; t) = u(x; t) + a tan(ax)
x

0

u(�; t) d� (4.3)

defined forx 2 [0; 1] and0 < a < �=2, has an inverse

u(x; t) = w(x; t)� a sin(ax)
x

0

w(�; t)

cos(a�)
d� (4.4)

and converts the system (3.2) into (4.1) with the initial distribution
w0(x) related tou0(x) asw0(x) = u0(x) + a tan(ax)

x

0
u0(�)d�.

Proof of Lemma 4.1:To prove that (4.4) is the inverse of (4.3) we
start from

w(x; t) =u(x; t)� �(x; t)

�(x; t) =�a tan(ax)
x

0

u(�; t) d�: (4.5)

Forx = 0we get�(0; t) = 0 sincew(0; t) = u(0; t). Forx 2 (0; 1],
we start by finding�x(x; t) from (4.5), use the variation of constants
formula with�(0; t) = 0, and get

�(x; t) = �a sin(ax)
x

0

w(�; t)

cos(a�)
d�: (4.6)

This proves the first part of the lemma. To prove the second part let us
first write (4.3) as

w(x; t) =u(x; t)� k(x)
x

0

u(�; t)d�

k(x) =�a tan(ax): (4.7)

We now look for conditions thatk(x) andc(x) should satisfy such that
if u satisfies equation (3.2), thenw satisfies equation (4.1). Taking one
partial derivative of the expression (4.7) with respect tot, two deriva-
tives with respect tox, and substituting the obtained expressions in
(4.1) gives

[�+ 2k0(x) + c(x)]u(x; t) + [k00(x)� �k(x)� c(x)k(x)]

�
x

0

u(�; t) d� = 0: (4.8)

Therefore, ifk(x) andc(x) satisfy

�+ 2k0(x) + c(x) = 0

k00(x)� �k(x)� c(x)k(x) = 0 (4.9)

the theorem is proven. By substitution of (4.2) and (4.7) we verify that
(4.9) is indeed satisfied. Finally, the boundary condition forwx(0; t) is
obtained by differentiating (4.3) and substitutingux(0; t) = 0, while
the Dirichlet feedback boundary controlu(1; t) is obtained by substi-
tuting x = 1 in (4.3) together with the fact thatw(1; t) = 0. This
concludes the proof.

Before continuing, we first remark that problem (3.2) is well posed
since transformation (4.3) is invertible and the problem defined by (4.1)
is well posed (see, e.g., [7, Ch. IV]). Also, by (4.4), there exists a pos-
itive constant� > 0 such thatku(t)kL � �kw(t)kL ; ku(t)kH �
�kw(t)kH , and by (4.3) there exists a positive constant� > 0 such
thatkw(t)kL � �ku(t)kL ; kw(t)kH � �ku(t)kH . Therefore, it
is sufficient to prove (3.3) and (3.4) for the solutionw of (4.1).

i) Define

E(w; t) = 1
2

1

0

w(x; t)2 dx: (4.10)

Using the fact that for all functions withwx(0) = w(1) = 0
inequality(�2=4)kwk2 � kwxk

2 holds (�2=4 is the smallest
eigenvalue of the operator�(@2=@x2) with the same boundary
conditions1 ), and thatmin0�x�1 c(x) > �(�2=4), we get

_E(w; t) � �2
�2

4
+ 2a2 � � E(w; t) (4.11)

which implies

E(w; t) � E(w; 0)e�2((� =4)+2a ��)t; for t � 0: (4.12)

ii) Set

V (t) =
1

0

wx(x; t)
2 dx: (4.13)

Using the definition (4.10) ofE, we deduce that (the following
Cs denote various positive constants that may vary from line to
line)

_E(t) + V (t) � CE(t): (4.14)

Multiplying (4.14) bye((� =4)+2a ��)t and then integrating the
obtained expression from 0 tot gives

e((� =4)+2a ��)tE(t)

+
t

0

e((� =4)+2a ��)sV (s)ds � CE(0): (4.15)

1This result is well known for Dirichlet boundary conditions (see [8, Ch.
I]). For the mixed boundary conditions it can be proved by representing
w(x) = a cos((2k + 1)(�=2)x), noting by integration by parts
that � w w dx = w dx, and showing by simple calculation that
� w w dx = a (2k + 1) (� =4) � (� =4) a =
(� =4) w dx.
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Multiplying the first equation of (4.1) bywxx and integrating
from 0 to 1 by parts we obtain

_V (t) ��2
1

0

w2
xx dx+

1

0

w2
xx dx+ C

1

0

w2 dx

�C
1

0

w2 dx � CE(t); (4.16)

which implies that

d

dt
(V (t)e((� =4)+2a ��)t) � C[E(t) + V (t)]e((� =4)+2a ��)t:

(4.17)
Integrating (4.17) from 0 tot, together with (4.12) and (4.15)
finally gives

V (t)e((� =4)+2a ��)t � C[V (0) + E(0)]: (4.18)

This shows that (3.4) holds.

V. EXTENSION TONEUMANN BOUNDARY CONTROL CASE

In this section, we extend the results from Section III to Neumann
boundary control. The main ideas for this case are similar to those
for the Dirichlet case. We start from the fact that equation (3.1) with
Neumann boundary conditionux(1; t) = 0 is unstable for� > 0.
We propose a Neumann boundary feedback control law such that the
closed-loop system

ut = uxx+�u in (0; 1)�(0; 1);

ux(0; t) = 0 in (0; 1);

ux(1; t) = �(�+a tan(a))u(1; t)

� �a tan(a)+
a2

cos2 a

�
1

0

u(�; t)d� in (0; 1);

u(x; 0) = u0(x); u0x(x) = 0; in (0; 1)
(5.19)

is exponentially stable for� > 2.
Theorem 5.1:Assume that

� 2 0; 1 +
�2

2

a 2 max 0; sgn
�

2
�

1

2

�

2
�

1

2
;

�

2

and� > 2.

1) For arbitrary initial datau0(x) 2 C(0; 1); u0x(0) = 0, equation
(5.19) has a unique classical solution that satisfies the following
L2 exponential stability estimate:

ku(t)k �Mku0ke�(1+2a ��)t (5.20)

whereM is a positive constant independent ofu0.
2) For arbitrary initial datau0(x) 2 H1(0; 1); u0x(0) = 0, equa-

tion (5.19) has a unique strong solution that satisfies the fol-
lowingH1 exponential stability estimate:

ku(t)kH �Mku0kH e�(1+2a ��)t=2: (5.21)

The proof of Theorem 5.1 is similar to that of Theorem 3.1. We out-
line only the differences. Instead of (4.1) we consider

wt = wxx � c(x)w in (0; 1)� (0; 1);

wx(0; t) = 0;

wx(1; t) = ��w(1; t) in (0; 1);

w(x; 0) = w0(x); w0
x(x) = 0 in (0; 1):

(5.22)

It can be shown that the system (5.22) is exponentially stable ifc(x)
satisfiesmin0�x�1 c(x) = c(0) > �1. Using inequality

1

0

w(x; t)2 dx � 2w(1; t)2

+ 2
1

0

(1� x) dx
1

0

wx(x; t)
2 dx

� 2w(1; t)2 +
1

0

wx(x; t)
2 dx (5.23)

and definition ofc(0), we get that

_E(w; t) � (2� �)w(1; t)2 � 2(1 + 2a2 � �)E(w; t) (5.24)

which implies

E(w; t) � E(w; 0)e�2(1+2a ��)t; for t � 0: (5.25)

The remainder is the same except(�2=4) + 2a2 � � replaced by1 +
2a2 � � andV by V (t) = �w(1; t)2 +

1

0
wx(x; t)

2 dx.

VI. SIMULATION STUDY

In this section, a simulation study that addresses the most relevant as-
pects of the proposed feedback boundary control scheme is conducted.
The study consists of two distinct parts. In the first part we present
results that put the emphasis on the main features of the proposed feed-
back boundary control scheme, while the second part includes a com-
parison with a controller based on pole-placement feedback design for
parabolic PDEs from [11]. In both parts of the study we present the re-
sults for Dirichlet feedback control law (3.2) only. The behavior of the
closed loop system for Neumann case (5.19) is completely analogous.

We start with the unstable heat equationut = uxx + 3u, with
u(x; 0) = 1 � 9x2 + 8x3. As shown in the eigenvalue analysis, the
case with� = 3, which corresponds to one unstable eigenvalue, cannot
be stabilized using homogeneous boundary conditionsux(0; t) = 0
andu(1; t) = 0. Although we do not show the simulation results for
this open-loop case, we mention that the nondimensional temperature
u(x; t) grew exponentially above 50 in less than 10 s.

As the first step we compare the two Dirichlet feedback boundary
control designs for the systemut = uxx+3u. The only difference be-
tween the two proposed feedback designs is the value of the adjustable
control gain that was chosen asa = 5�=20 anda = 9�=20 respec-
tively. In both cases Dirichlet controllers are able to stabilize the un-
stable heat equation. The first row of Fig. 1 shows the nondimensional
temperature at the uncontrolled endx = 0. The temperature atx = 0
is the most representative of the controller performance since the point
x = 0 is the farthest from the endx = 1 at which the control is applied,
and therefore it decays at the slowest rate. As expected, the controller
with higher control gain achieves much faster convergence. The fast
response is paid for with a significantly higher control effort. Control
signals for botha = 5�=20 anda = 9�=20 are shown in the second
row of the same figure.

It is important to understand how conservative are the estimates on
the range of the parameter� for which the stabilization of the system is
possible, and determine the lower bound on control gaina that renders
the closed loop system stable. Indeed, simulation results suggest that
we can stabilize the system for a much wider range of� than the theory
predicts. Fig. 2 shows the closed loop temperatureu(x; t) and the tem-
perature controlu(1; t) for the system with� = 10, which is roughly
35% above the predicted upper bound� = 3�2=4. The simulation was
performed for the same initial distributionu(x; 0) = 1 � 9x2 + 8x3

with a = 0:95(�=2).As it can be seen from Fig. 2 it takes the controller
significantly longer to stabilize the system. Simulation results also sug-
gest that the lower bound on control gaink = a tan(a), or alternatively
ona, is not optimal and that stabilization can be achieved with smaller
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Fig. 1. Closed-loop response of the system with the Dirichlet feedback boundary controlu(1; t) = �a tan(a) u(�; t) d� foru(x; 0) = 1�9x +8x ; � =
3 (one unstable eigenvalue), and two different values ofa. [First row: The evolution of the uncontrolled end,u(0; t); Second row: The control effortu(1; t).]

Fig. 2. Closed-loop temperatureu(x; t) and the temperature controlu(1; t) for the unstableheat equation (� = 10) with the Dirichlet feedback boundary
controlu(1; t) = �a tan(a) u(�; t) d�; a = 0:95(�=2), and initial distributionu(x; 0) = 1� 9x + 8x .

control gain. Fig. 3 shows the closed loop temperatureu(x; t) and the
temperature controlu(1; t) for the system with� = �2=2, and a con-
trol gain equal to 80% of the minimum required gain, i.e.,

a = 0:80
�

2
�

�2

8
= 0:80

p
2�

4
:

The same type of behavior with respect to the range of the parameter
� and the lower bound on control gaina was observed for various dif-
ferent combinations of initial distributions and parameters� anda.

In this second part of the simulation study we show a comparison
between the controller presented in this note and a feedback controller

based on [11]. The algorithm from [11] is extended in a straightfor-
ward manner to accommodate the case of mixed Dirichlet–Neumann
boundary conditions, namely Neumann boundary condition at 0-end
and Dirichlet at 1-end. Before we proceed to the simulation results we
briefly go over the assumptions and relevant details of the controller de-
sign from [11]. The idea employed by Triggiani in [11] was to separate
the system into a finite-dimensional unstable part and an infinite-di-
mensional stable part. The feedback control that stabilizes the unstable
part, while leaving the stable part stable, is then applied.

The controller is designed under the assumption of a single unstable
eigenvalue. Applying the algorithm outlined in [11] to our 1-D system,
we get thatA

T

u = �+WTP
T

, whereAu; �; W , andP , respectively,
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Fig. 3. Closed-loop temperatureu(x; t) and the temperature controlu(1; t) for theunstableheat equation (� = � =2) with the Dirichlet feedback boundary
controlu(1; t) = �a tan(a) u(�; t) d�; a = 0:8 (�=2)� (� =8) , and initial distributionu(x; 0) = 1� 9x + 8x .

Fig. 4. Closed-loop response of the system with two different Dirichlet feedback boundary control laws [leftu(1; t) = �a tan(a) u(�; t) d�; a =
0:95(�=2), and rightu(1; t) = (� + � � (� =4)=�) cos((�=2)�)u(�; t) d�; � = 0:1] for u(x; 0) = 1� 9x + 8x , and� = 3 (one unstable
eigenvalue). [First row:u(x; t); Second row: The control effortu(1; t).]

stand for the new target subspace of the original unstable subspace
Au, the block-diagonal matrix associated with unstable eigenvalues,
the feedback matrix, and the matrix associated with interior vectorswk

(see [11] for details), reduces to

��new = �1 + w1p1; �new > 0: (6.26)

The objective, as implied by the equation (6.26), is to design a feedback
control law that places the unstable eigenvalue�1 at��new. Finding
the spectral decomposition of the open loop system, and following the
approach outlined in [11], we finally obtain

u(1; t) =
�new + ��

�2

4
�

1

0

cos
�

2
� u(�; t) d�: (6.27)
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Although we have conducted comparison study of the two designs for
several different combinations of initial distributions, system parameter
�, and control gains (a in our case and�new for the controller from
[11]), we only present a result for� = 3; u(x; 0) = 1 � 9x2 +
8x3; a = 0:95(�=2), and�new = 0:1, and briefly summarize results
for other settings that we have tested. The behavior of the closed loop
system was simulated using BTCS finite difference method forN =
200 and the time step equal to1e-6 s.

Fig. 4 shows the closed loop temperaturesu(x; t) and the temper-
ature controlsu(1; t) for this particular setting. Note that we have
chosen�new that achieves a good trade-off between the rate of con-
vergence and the size of the control effort. Placing��new further left
on the real axis would insignificantly improve convergence but would
result in much higher control effort. What is apparent from Fig. 4 is
that the controller from [11] is faster, but better performance had to be
paid for by much higher control effort. As a rule, the controller from
[11] was achieving faster convergence for all the settings we had tested,
but it required much more aggressive control effort (approximately 2–7
times higher). Finally, as expected, none of the controllers could stabi-
lize the system with two unstable eigenvalues.
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Remarks on the Robust Output Regulation Problem for
Nonlinear Systems

Jie Huang

Abstract—The robust nonlinear output regulation problem was first
solved under a polynomial condition on an input feedforward function.
Another condition was given later which appears less restrictive than the
first one. In this note, we will show that both these two conditions lead to
the same sufficient condition that the input feedforward function along the
trajectories of the exosystem is a sum of finitely many harmonics, or what
is called trigonometric polynomial.

Index Terms—Nonlinear systems, output regulation, servomechanism
problem.

I. INTRODUCTION

The robust servomechanism (alternatively, structurally stable output
regulation) problem for linear systems has been thoroughly studied in
the 1970s in [4], and [7], [8], among others. Briefly, this problem is
concerned with designing a control law for a plant such that the output
of the plant asymptotically tracks a class of reference inputs and rejects
a class of disturbances in the presence of certain plant parameter per-
turbations. For the class of nonlinear systems, the same problem was
first treated for the special case in which the exogenous signals are con-
stant [8], [6], and [12]. The nonlinear output regulation problem with
time varying exogenous signals was first studied in 1990 by Isidori
and Byrnes without considering the parameter uncertainty [13]. Sub-
sequently, the robust version of the same problem has been pursued in
[10], [19], [5], [11], [9], [15], and [2]. It is shown in [10] and [19] that,
under some standard assumptions, the robust output regulation problem
is solvable if certain input feedforward function is a polynomial in the
exogenous signal. Another condition was given later in [2] which re-
quires the input feedforward function to satisfy a partial differential
equation. It was also shown there that the input feedforward function
satisfies that partial differential equation if it is a polynomial in the ex-
ogenous signal. Thus the later condition is considered less restrictive
than the first one. In this note, we will show that both of these two con-
ditions lead to the same sufficient condition that the input feedforward
function along the trajectories of the exosystem is a sum of finitely
many sinusoidal functions. The result not only links the two existing
conditions, but also leads to a clear-cut method to synthesize a minimal
dimension internal model needed for designing the desirable controller.

II. PROBLEM DESCRIPTION

The robust nonlinear output regulation problem deals with a plant
described by

_x(t) = f(x(t); u(t); v(t); w); x(0) = x0

y(t) =h(x(t); u(t); v(t); w); t � 0 (1)

wherex(t) 2 Rn is the plant state,u(t) 2 Rm the plant input,
y(t) 2 Rp the plant output representing the tracking error,w 2 RN

the plant uncertain parameters, andv(t) 2 Rq the exogenous signal
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