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Stabilization and Controllability for the Transmission
Wave Equation

Weijiu Liu

Abstract—n this paper, we address the problem of control of

the transmission wave equation. In particular, we consider the case 5 <
where, due to total internal reflection of waves at the interface, the
system may not be controlled from exterior boundaries. We show .

that such a system can be controlled by introducing both boundary n e
control along the exterior boundary and distributed control near !
the transmission boundary and give a physical explanation why

the additional control near the transmission boundary might be
needed for some domains. Fig. 1. A transmission domain.

Index Terms—Stabilization, transmission wave equation.
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. INTRODUCTION

a1

HE aim of this paper is to address the problem of control of
the transmission wave equation. More precisely we consider the
case where, due to total internal reflection of waves at the inter-
face, the system may not be controlled from exterior boundaries.
This complements previous results by J. L. Lions [7] amorid% %
others.

LetQ be a bounded domain (open, nonempty, and connected}” [7], Lions cpnsidered Fhe problem'of exact controllapility
in R"(n > 1) with a suitably smooth boundaiy = 99 which for (1.1)—(1.4) with a domain as shown in Fig. 2 and establl_shed
consists of two partd; andl's (see Fig. 1) LeT';, be a smooth the results of exact controllability (see [7, p. 379, Th. 5.1] if
hypersurface, which separat@snto two domaing?; andf2,. w > a (1.5)
The following figure is typical domain of this kind. L="" '

Consider the problem of transmission of the wave equatiofeaving the case whetg < a, as an open problem (see [7, p.

394, Prob. 8.1]). Similar condition was also imposed by Nicaise

A transmission domain.

i —aiAu; =0 in 2; x (0,00), (1) for an exact controllability problem (see [13, p. 1519, (H3)] and

u; =0 on(I'naQ;) x (0,00), (1.2) [14,p.587, Th. 2.2]) and by Lagnese for problems of transmis-
I I sion of a class of second-order hyperbolic systems (see [4, p.

1 2 . o .
up = up, ag - = az 2 only x (0, 00), (1.3) 345, (1.14)]). In addition, the author and Williams considered
wi(0) = w9, W(0) = ul inQ, i=12 (1.4) _the followmg problem of stabilization with a domain as shown
in Fig. 2
Inthe above problemy; = v;(x, t), a1 anda, are positive con- 7, A, — ¢ in € x (0, 00), (1.6)

stants, the primédenotes the derivate with respect to the time

variable,A denotes the Laplace operator in the space variable¥! = onl’; x (0,00), (.7)
andy denotes the unit normal dnandl’;, directing toward the Juy !

v — = - onI’; x (0, c0), 1.8
exterior ofQ2 and{?; andw;(0) andw}(0) denote the functions  dv 2 2 % (0,00) (18
x — u;(z,0) andz — u}(z, 0), respectively. This transmis- _ Jup  Oug
sion problem describes the wave propagation from one mediurii* ~ “** “* 5, = %2 5, onT x (0, 00), (1.9)
into another different medium, for instance, from air into glass%(()) =, ui(0) = u} ing;, i=1,2, (1.10)

and therefore it is of practical significance. ) ) o -
and obtained the exponential stabilization under condition (1.5)
(see [11, Th. 1.1]), leaving the case where< a, as an open
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Fig. 4. Total internal reflection.

Fig. 3. Total internal reflection.

a1 (see Fig. 3). Iff; is the angle of incidence (i.e., the angle
01 AJ) of a wave fromO; andf, the angle of refraction (i.e.,
the anglel AH), then, by the law of refraction (see, e.g., [17, p.
596]), we have

Fig. 5. A transmission domain.

. az .
sinfy = — sin ;. (1.11)
a1 as Fig. 3 might have no solutions if the control is allowed only
Sincea; > a;, we can obtain the critical angt of incidence On the exterior boundary.

given by
Il. STABILIZATION

. a1
sinf, = —.

as . Let 2 be a bounded domain (open, nonempty, and connected)

Wh h le of incid . h h itical dy R™(n > 1) with a smooth boundarlj = 9 which consists
en the angle of incidence Is greater than the critical angig, parts,['; andI's. I'; is assumed to be either empty or

f., the law of refra(_:tion (12.112) cannot.be satisfied and thgreljg have a nonempty interior arith = @ and relatively open in
no refracted wave in the second meditim All the energy is - | o I',. be a smooth hypersurface, which separateisto

reflecte_d. Th_is phen_om_enon i_s caI_IedaI interr_1a| _reflectiorbe— two domains2; and<2,. Letw be a domain nedr,, such that

cause in optics the incident light is usually inside glass and e
. ST T s w C w C . Assume

flected from the glass-air surface. This situation is illustrated in — — _

Fig. 3. The wave from the poiri is totally reflected at the point Finly =90, TNl =0, Tpnly=0.

A and then at the point8, C, D, E, F and finally totally back We denote

to the p(_)in_tO_. In this way, the wave will prop_agate forever an_d wi=Nw, Ty=0,n09;, ij=12

never diminish. Therefore any control applied on the exterigr

boundaryl” of £2 can do nothing on such a wave. Consequentl ,UCh a o!qmaln s illustrated in Fig. 5. .
in the case where, > a;, an additional control near the trans- In addition to boundary feedback control (1.8), we introduce

mission boundary,,. might be needed for some domains suc Iocz:\jllzelcjly dlstfrllloluted feedback control near the transmission
as Fig. 3. However, if a domaift is like the one as shown in oundaryl ;- as follows

Fig. 4, the totally reflected waves will be absorbed or controlled i —ailu; + by u; =0 in €2; x (0, 0), (2.1)
when they reached the exterior boundBrgf 2 and therefore  «; =0 onI'y; x (0, 00), (2.2)
there is no need to introduce additional control near the trans-,,, )
mission boundary’;,.. For this reason, we shall consider only .~ = —ku; only; x (0,00),  (2.3)
the domains as shown in Fig. 3. Oy s

In the rest of the paper, we consider the problem of stabiliza-u1 = u2, a1 o 2, onl'. x (0,00), (2.4)
tion for (1.1)—(1.4) in Section II. By introducing both boundary o 1 . )
feedback control and distributed feedback control near the(0) = > ui(0) = v; gy, i=1,2, (2.5)

mwhereb andk are positive constants and,, denotes the char-
acteristic function ofu; in €2;.

To state our results, we introduce notations used throughout
dhe paper. For a domaiiiin R™, we denote by *(O) the usual
fobolev space for any< R (see, e.g., [1]). If'y = @, we define

transmission boundaly,,., we show that the controlled syste

is exponentially stable without any restriction ap and ao

and the transmission bounddry,.. In Section lll, we discuss

the problem of exact controllability and prove that proble

(1.1)—(1.4) is exactly controllable under the same assumptio
.We note_that. our paper has not sol\_/ed an open probqupl: (u(l)’ ud, ul, ué) € H(Q) x H ()

raised by Lions in [7, p. 394, Prob. 8.1] since we introduce the

additional distributed feedback control near the transmission % LQ(QI) % LQ(QQ); u(f - ug onT;, and

boundaryl';, and this makes the problem much simpler than 2

the original open problem in which only the boundary control is X Z( kau dF+b/ ud da:—i—/ u} da:) = 0} .

allowed. However, the phenomenon of total internal reflection im1 /T2 w; Q

shows that the original open problem for some domains such (2.6)
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If I'y # 0, we define
Vi, = {(uf, w3, vy, u3) € HY(Q1) x H ()
x L2H(Q) x L*(Q): uf =uyonly,
andu) =0onTy;, i =1, 2}. (2.7)

As in [9], we can readily prove that there exists a positive con-
stantC such that

2 2
Z/ |u?|2 de > C Z/ (|u3|2 + ai|Vu?|2) dz, Fig. 6. Boundary partition§ () andl'* ().
i=1 v i=1 v
YV (ud, w3, ui, u}) € Vi,. (2.8) singularity at pointss € I'*(xzo) N I'(xo) since, in general,
T (xo) NT(zo) # 0, wherel™*(zg) = I' — I'(xo) (see Fig. 6).
For the discussion of such a case, we refer to [3].
Remark 2.2: Once we obtained the exponential stabilization,
5 1/2 the exact controllability for (1.1)—(1.4) can be readily estab-
_ <% Z/ (|u3|2 ta |Vu?|2) da:) (2.9) Iisheq by applying Russell's “cont.ro!lability via stabilizability”
pRAYr principle (see, e.g., [15]) as we did in [11].
We now prove Theorem 2.1. The idea of the proof is simple.

Hence, the norm o,

(), w3, wi, u3)

Vry

is equivalent to the usual one induced By (£2;) x H () x : , e
L2(Q1) x L2(2). As usual, we can easily show that systerH suffices to show that there exist positive constdfits 0 and
(2.1)-(2.5) generates a strongly continuous semigrougron 0 <p <1suchthat(see, e.g. [2], [5] and [10])
The energy of system (2.1)—(2.5) is defined by E(t) < pE(0), Vit >T. (2.15)
E(t) = ||(u1, ug, uf, uh) %,r However, the verification of this inequality is not easy. For this,
5 ! we employ the classical multiplier method originated by Lax,
) -
:%Z/Q (|u§(t)| —l—ai|Vui(t)|2) dz. (2.10) ;\ig]r)awetz, Phillips, Ralston, and Strauss (see [6], [12], and
i=173%% .
We can readily verify that Proof of Theorem 2.1:For7" > 0, integrating (2.11) from
0 to 7", we obtain

2 2
E'(t)=—k il dl — /b<2d. 2.11 2T
(t) 2_)/|u| > [ i @an E<T>+k2/ / P
= = “—~ Jo T,

Hence the energy decreases with time. Indeed, we have the fol- 2
lowing exponential stability theorem. / / bl 12 di d
. 4 t = E(0). (2.16
Theorem 2.1:Let » denote the unit normal ob and I, * ; 0 Ju il dw ). ( )
pointing toward the exterior a2 and§};. Suppose that there
exists anry € R™ such that

m-rv<0 onl’; (2.12) 2
wherem = m(x) = « — 2. Then there are positive constantd (1 E(T) < k Z/O /F _ a;|uj|? dr dt
M, 7 such that i=1 = ,
T
E(t)<Mc™E(0) fort>0 (2.13) +> / / bluf? dedt  (2.17)
for all solutions of (2.1)—(2.5) withu?, u9, ul, u}) € Vr,. i=1 70 T
Obviously, if the domain2 has only one hole, then thethen (2.15) can be established. Therefore, our proof is reduced

boundary control can be supported only on the exterior part6fprove (2.17).
the boundary of? by taking anz, inside the hole. However, if Forany0 < é < T, we denote

If we can prove that there exist a sufficiently laffje> 0 and a
corresponding constai (7") > 0 such that

the domairt2 has more than one holes, except for one of them, Qi = x (6, T — 6)
the boundary control has to be applied to the boundaries of all Qo =w; X (8, T — 6)
other holes. k ’
Remark 2.1:In Theorem 2.1, no geometric conditions are L =09 x (6, T = ¢) (2.18)
imposed orf2. Such an improvement without geometric condi- 5 =0y x (6, T — 6)

tions was due to Lasiecka and Triggiani [5] and here we simpl .
follow their idea and then nothin%gis n(£vx]/ in this aspect. V?lg e =L x (8, T = 8), t=12 (2.19)
note that such an improvement is established at the cost that@ce we assume that the unit normainI',. points toward the
supportl’; of boundary control may contain points satisfyingxterior of¢l;, we have (see Fig. 5)

m - v < 0 and therefore bigger than the usual set S =311 U Uy, (2.20)

F(.’IZ'()) = {.’L’ el m(a:) . l/(.’L’) > 0} (214) Yo =212 U2 U (_Etr) (221)

If we want to reduce the suppdrt to I'(x(), we may lose where—3,;,. means that the unit normalon[';,. points toward
something again, that is, the solution of (2.1)—(2.5) may hatkee interior off2,.
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Let i(z) = (Ii(z), ..., l.(x)) be a vector field of class
C?(2). Multiplying equation (2.1) by (9u;/dzy) (i = 1, 2)
and integrating ord); by parts, we have

T—6 .
1 : 712
—1—2/@ div(D)|u;|* dz dt az/zi 5

s 2
du; Ol Sy i
" r ou dt—i—%/ lkllk|vui|2 dx
%

Iy dx

8xk

i [ ' du;
- %/Qi div(D)| Vs |? da dt+/ | b L %ku; dz dt.
(2.22)

Multiplying (2.1) by »; (: = 1, 2) and integrating orQ; by
parts, we obtain
2

Z/ (|uf]® = a;|Vu;|?) da dt

i=17@Qi
2
Z —i—Z/ bX o, wiu; do dt
—Z

8u7
81/

(2.23)

a; / U;
P

Summing (2.22) fot with! = m, using (2.20), (2.21) and (2.23)

and noting that;; = 0 onXy; andu; = us onX,,., we obtain

/G'TO E(t) dt
:_i< n—l w; (1) + my 8;5;))
(n—-1) Z / 8u7

81/
2 n—
Ry
=1 Qi

2

T—6

&

9}
Uy + M 8_31;)“ dx dt

m - vl |? dE
—1 Y 22

/ < Bul
+ ai
Sir

81/
a a
+ ?kal’k|vu2|2 — ?1 mkl/k|Vu1|2> d>

2) d%

1
~5 mkuk|Vu7;|2> d3.

+3

Bul 8u2
—a
Yoo, o

8u2
8a:k

8ui 1
my, — —mu |V,
kaxk 5 Mk | Vg |

8u7;
g
8xk

(2.24)

1903

 First Term It follows from (2.8) and (2.11) that:

3 (0. "5

i=1

)L < CE(5).

(2.25)
« Second TernBy Young's inequality and the trace theorem
(see, e.g., [8, p. 39]), we obtain

8ui (t)
p——"

u;(t) +m .

2T 1/2
<oy / sl ([ wioar) " a
dt+CZ/

a;

lul|?dY  (use (2.8))

(2.26)

e Third Term By (2.8) and Young’s inequality it follows
that:

"
by [ =
iX7< 2

T—6 2
< i/é E(t) dt+CZ/Q blub|? de dt.  (2.27)
=1 w;

Oui ) u dx dt
L

U; + My

« Fifth Term Let us choose the open subsetsw’ and the
vector fieldl to be such that

Il=m onTy., supp! C w’ and

[y Co' Cow/ Cw’ Cw”’ Cw. (2.28)

Then! = 0 nearl’. It therefore follows from (2.22) that:

/ <CL 8u1 8u1
S

" Orx
+ ?kal/k|VUQ|2 - % mkl/k|Vu1|2> dx

= 22: <ug(t), Ik %S))

=1

2
%Z/ div(D)|u})? de dt
22: / du; Ay, du;

— 835] 8351 Iz,

2
-1 Z/ a; div(D)|Vu;|? dx dt

81@
myg —
8xk

81@
— a9 ——
v

T—o6

§

dx dt

.

To estimate the right hand side of (2.24), only the transmission
term needs a special care and all other terms can be handled
in the usual way. However, for reader’s convenience, we give
detailed estimates for all terms. In what follows, #ielenotes a
generic positive constant(n, z°, £2), independent df’, which

may vary from line to line, while thé{(7") denoting a generic
positive constank (n, z°, Q, T), dependent of .

2
Z/ b)(w lk g
i=1 Y Qi
< CE(8)+C Z/ bl |? da dt

(2.29)

2
+C Z/ |V, |* dz dt
=17 Qur
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where whered/dr denotes the tangential derivative ba (for
) definition, see, e.g., [7, p. 137]). Although (2.35) was ob-
J— / _ P —
Quy = w; (6, T —9), i=1,2 tained for a second-order hyperbolic equation with smooth

Let & = 6(x) be a smooth function such that coefficients, it still holds for our transmission problem due
=1 inw andd =0inQ — o7 (2.30) to the local pr_operty of (2.35). Indeed, when we d_o the
partition of unity forI'; and flatten the boundary via a
and change of variable, we obtain a second-order hyperbolic
|Ve|? equation with smooth coefficients in a half spaceRjf
;122—)( S (2:31) since the coefficients ne&y, are constants. Moreover, the
, ) proof of Lemma 7.2 of [5, p. 218] works for the transmis-
Then¢ = 0 nearl’. For the existence of such a function,  gjon problem simply because the elliptic estimate in [5,
we refer to [7, p. 414]. Multiplying (2.1) bju; and inte- (7.10), p. 219] requires onlg priori regularity of solu-
grating over®; by parts, we obtain tion u € H/2*¢(Q) and this is the regularity that the
2 ) solution of our transmission problem had\oting that
> ai | OVl dudt Vug|? = |9 /7|? + |Ous /o ]? (see, e.q., [7, p. 137]),
=1 @ o it therefore follows that:

6 9
+Z/ OJul |2 d dt
5 i=1 /s
2 2 ,
_ 0 . ) _ ot T
Z/ | a;u; VO - Vu; dr dt Z/.bxwieuzuz dx dt < K(T) Z [/ / <
=1 “ =1 “ Pl 0 L

2
< CE()+C Z/ blul|? da dt
i=1 !’

= Z (ui(t), Bui(t))

2
C (O Ou; 1 ,
i ‘ — 5 k| V| ) dX

; ‘ /227' <al" 1k Ixy 2 mkl/k|Vu | )

8u7;
v

2
+ |u;|2> dr dt

+ ||U'i||§{‘/2+5(Qi) . (236)

2
+ 3 Z ai | O0|Vu;|*drdt+C Z / |u;|? dz dt  Ittherefore follows from (2.24)—(2.27), (2.33), (2.34) and (2.36)
; i=1 " Qur

i=1 o that:
(2.32) T—s 2T
where / E(t)dt <CE(5) + K(T) Y / / ol 2 I dt
Qur =i x (6, T—8), i=12 ® . —Jo Jr.
Hence, by (2.29), we deduce that +C Z/ / blui|? da dt
’ duq duq dug dug i=170 Jwi
/2” <algmk%k _GQEmk%k

2
az , W , + () Y ullipes gy @37
+ E mkl/k|VU,2| — Emkl/k|Vu1| > P

Since by (2.11)

2
< CE(§)+C Z/ blu; | dx dt 2 [T
i=1 7 Qu; E(8) :E(T—é)—l—kZ/ / ailui|* dT dt
=19 o

2
+C Z/ |u;|? da dt. (2.33) 2 oy
i=1 7 +b Z/ / il |2 d dt
* Sixth TermSinceu; = 0 onI'y; x (0, T'), we deduce /s ws
Y Wi = meve| Vi = ~m - v Y <0. (2.34) Wwe obtain

Ty, =
ov dxry, 2 2 ov
« Seventh TermTo estimate the last term, we apply [5(7 — 20)E(T" — ¢)

Lemma 7.2, p. 218]. This lemma can be stated as follows: T—6
for arbitrarily small§, e > 0 there exists a positive —/ E(t) dt
constantk’ = K (T, 6, €) such that

2 T
2 s . < CE(T - 8) + K(T) / / il |2 dT dt
Z/ / Oui ™ gt ; o I,
=170 Ta; or ) . )
2 T 2 /2 112
ou, 4O [ [ vt dear+ KOS sl e,
smz[// ( u +|u;,|2)dm >/ Sl veco
Lo e T (2.38)

+ ||U/7‘,||§{1/2+5(Q7.) (235)

IThe author thanks Professor I. Lasiecka for pointing out this to him.
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and then Therefore, by [7, p. 92, Th. 8.2], we have
(T — 26 — C)E( w,=v; =0 inQ x (0, 7). (2.54)
It then follows that:
< K(T L% dl dt :
Z/ /r |UZ| —a;Au; =0 in 2 x (0, T), (255)
Z ) 22: ) u; =0 onl'y; x (0, T), (256)
e / / Vel ddt + KDY uilrereion ou
= Jo Je o) i g onTy x (0, T),  (2.57)
v
(2.39) o o
Uy = U2, ai -1 = a2 ) onl';, x (0, T), (258)
Using Lemma 2.1 below and by the usual compactness-unique- dv dv
ness argument (see, e.g., [5] and [7, App. 1]), we can readiinich implies (2.49). O

prove that

2
D illi e gy <K
=1

2 T
T) Z/O /F | |? dT it
=1 2i

2 . .
T ! bl |? du dt
)Z ; || de dt.
i=1 w
(2.40)

It therefore follows that:

_ — — ’ w2
(T — 285 — COYE(T 6)§K(T);/O /F2i|z| dl dt

2
T ‘ blui|? dx dt
) ; |w;|” dz
i=1 wi

(2.41)
which implies (2.17) for sufficiently larg&. O
Lemma 2.1:If the solution of
w! —a; A + by, v =0 in€; x (0, T7), (2.42)
u; =0 onl'y; x (0, T), (2.43)
8ui
5 —k onl'y; x (0,T), (2.44)
17
ou du
Uy = U2, ai a_lll = as 8112 onl';, x (0, T), (245)
1 (0) =, ul(0) = u} inQ;, i=1,2, (2.46)
satisfies
U,; =0 onl'y; % (0, T) (247)
and
w, =0 inw; x(0,7) (2.48)
for sufficiently largel” > 0, then
u; =0 in Q, X (0, T) (249)
Proof: Setv; = u;. It is clear that satisfies
v —a;Av; =0 iny x (0, 7), (2.50)
v; =0 onl’; x (0, T), (251)
8vi
o 0 onl’'y; x (0, T), (252)
v; =0 ONw; X (0, T) (253)

I1l. EXACT CONTROLLABILITY

In this section, the domairi, 2; and{2, are the same as in
Section Il, but the partition of the boundalryof §2 is different
and we partition it as follows (see Fig. 6):

D(zo) ={z € T: m(z)-v(z) > 0} (3.1)
I*(29) =T — I(zo) (3.2)
wherezo € R® andm = m(z) = x — x9. We denote
R(zo) = max|m| (3.3)
e
Fz(xo) :F(.TO) N a8
T (xo) =T*(zo) N Oy (3.4)
Yi(xo) =Ti(zo) x (0, T), 1=1, 2. (3.5)
We introduce the function space
Voo (20) = {(u?, ug, u?[, u%) € Hl(Ql) X HI(QQ)
X LQ(Ql) X LQ(QQ) U,l = U,2 onl,
andu! =00onTl}(zo),i=1,2}. (3.6)
Let us consider the problem of exact controllability
yg’—aiAyi = hinz. in Q7 X (0, T), (37)
yi =0 onl (o) x (0, T), (3.8)
Yi = (f)7 on F7(.’L'0) X (0, T), (39)
3] 3]
Y1 = Yo, a1 % = as 8y1/2 onT'. x (0, T), (3.10)
yi(0) =), ¥i(0) =y; inQ;, =12, (3.11)

whereh, and¢; are controls to be found ang,, denotes the
characteristic function ab;. We have the following exact con-
trollability theorem.

Theorem 3.1:Let a = min{a;, ax} andT > 2R(z¢)//a.
Then for any

(VF* (“70))/

there exist controlg,; € L?(3;(zo)) supported oi’;(zo) and
(h1, h2) € C([0, T); (H*(21) x H*(£22))") supported onw
such that the solution of (3.7)—(3.11) satisfying

y1(T) = y2(T) = y1(T) = yo(T) = 0.

By the Hilbert uniqueness method (HUM) (see, e.g., [7]), it
is well known that the above exact controllability is equivalent
to the following observability.

(yi7 Y25 oY, yg) € (the dual space Of- (,,))

(3.12)
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Theorem 3.2:Let a = min{ay, az} andT > 2R(x¢)/+/a. and then
Then there exist a smooth functign= ¢(x) supported orw

and a positive constad > 0 such that Z/ 9(|U§(8)|2 +ai|vui($)|2) do

2 T 2 '

> / / Qi " gp gy 2

2\ Jo Jrieo | OV _Z/ B + ai|Vaus(1)2) do

g 2 2
R B Yk / ()58 V(e (618
for all solutions of (1.1)—(1.4).

Proof: Noting thatu; = 0 onI’ N 9%;, we deduce from Takings = ¢ in (3.18), we obtain

(2.24) and (2.34) that 2 /
T—s 2 T8 (T —26) Z (I (O + ai| Vi (6)[?) de
/5 E(t)dt + Z <u;(t), HT_l wi(t) + my 3uz(t)> ’
=1 &

8a:k

||Mw I&w ||M.\>

(&)1* + a;|Vui(8)[?) da dt

%

. 2 /s rnosy; v

1

=1

/ ou Om _ Ouy  Oup

- ai EY mg o7 ag —/— EY g Ern

+ %mkl’k|vu2|2 — % mkuk|Vu1|2> ax.
(3.14)

<

dl' dt

L0 + ai| Vui(8))?) dx dt

_|_
\\\

IA

L + ;| V() [?) da dt

_|_
[\)

o
ST
/2
2

As usual (see, e.g., [7, p. 375, (4.25)]), we can estimate
2 T—5
5 (s, 5ty + i 22)
=t Rt ' T—§ T—§
2R
< %E(O). (3.15) +C Z/ / /

T—§
/ / / a;|ui(s)VO - Vu,;(s)| dx ds dt
7 Js s Jo,

/T_é/ (I ()7 + @il Vi ()|?) da dt

M.\;

<.
Il

2
SinceE(t) = E(0), it therefore follows from (2.29) that: X (Jui () + ai| Vui(s)|?) d ds dt
2 T—6
(T — 26)E(0) — 28(zo) E(0) <C Z/ / (i (D) + as| Vs ()]?) da dt.
Va =179 w”
-5 |2 (3.19)

Z &/ / m-v Ou; dl™ dt o ) _
—~ 2 T (20) dv Similarly, by takings = 7' — & in (3.18), we deduce

2 2

Z/ (&) + [ul(T — 8)* + |V (8)[? (T — 26) Z/ (T — &) + |V (T — 6)?) de

= =17

+ |V (T = 8)|?) dz

2 T-6
2 T <C Z/ / (Juf ()P + a;| Vs (6)]?) da dt.
+C Z/ / |ul|? da dt i=1"9 w”
i=170 wi

(3.20)
5 .
e Z /T o/ Vs |? de dt (3.16) It therefore follows from (3.16), (3.19), and (3.20) that:
—1 /0 w! T—6 Sus 2
wherew’ is the subdomain given in (2.28). We now estimate the?(0) <C Z/@ /F (o) | OV dl” dt
=1 o

second term of the right-hand side. Létandw” be given in

. . . s 2 T-6
(2.28) and be the smooth function given in (2.30). Multiplying PN ‘ a2
(1.1) by#w} and integrating ovef?;, we obtain +C Z (|ui(t)| +ai| Vui () ) du dt.

(3.21)

2
Z / (|u}]? + ai|Vw;|?) de
=1

2
=2 Z/ a;u, Ve - Vu; dr  (3.17)
i=1 "l

On the other hand, let"” be a open setsuchthat C "' C w
and take

p=(t—6)%(T — b —t)*(x) (3.22)



LIU: STABILIZATION AND CONTROLLABILITY FOR THE TRANSMISSION WAVE EQUATION

where0 < 6; < § andy € C°°(Q) is a nonnegative function

such thaty = 1 onw” andy = 0 on§2 — w'”. Set

mi = min {(t-6)(T—-6&—t)*} >0 (3.23)

§<t<T—6

Multiplying (1.1) by pu,; and integrating ovef;, T —é1) x €2,
we obtain

2 T—6,
Z/ / plui|? dx dt
i=17% Q

T—61

2
It therefore follows that:

2 -6
Z/ / |2l |? da dt
s W
2 T—6
< mit Z/ / plus|? da dt
= Js Qs
2 T—61
<m? Z/ / plul|? dz dt
=170 2;

2 T—6
=C Z/ / (lwil® + |V [?) de dt. (3.25)
i=1 (51 W

Hence, by (3.21) and (3.25), we deduce that

2 T
E(0)<C / /
; 0 JTi(w0)
2 T
+CZ// (hei|? + | V| ) dec dt. (3.26)
=1 0 W

/ (ai|Vui|2p+aiVui -Vpui—i—%u?p”) dx dt.
Q;

(3.24)

2

Oui | r gy

v

By taking a nonnegative functiop € C'*°(Q2) such thatp = 1
onw” andy = 0 on — w, we deduce (3.13). O
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