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Stabilization and Controllability for the Transmission
Wave Equation

Weijiu Liu

Abstract—In this paper, we address the problem of control of
the transmission wave equation. In particular, we consider the case
where, due to total internal reflection of waves at the interface, the
system may not be controlled from exterior boundaries. We show
that such a system can be controlled by introducing both boundary
control along the exterior boundary and distributed control near
the transmission boundary and give a physical explanation why
the additional control near the transmission boundary might be
needed for some domains.

Index Terms—Stabilization, transmission wave equation.

I. INTRODUCTION

HE aim of this paper is to address the problem of control of
the transmission wave equation. More precisely we consider the
case where, due to total internal reflection of waves at the inter-
face, the system may not be controlled from exterior boundaries.
This complements previous results by J. L. Lions [7] among
others.

Let be a bounded domain (open, nonempty, and connected)
in ( ) with a suitably smooth boundary which
consists of two parts, and (see Fig. 1) Let be a smooth
hypersurface, which separatesinto two domains and .
The following figure is typical domain of this kind.

Consider the problem of transmission of the wave equation

in (1.1)

on (1.2)

on (1.3)

in (1.4)

In the above problem, , and are positive con-
stants, the primedenotes the derivate with respect to the time
variable, denotes the Laplace operator in the space variables
and denotes the unit normal onand directing toward the
exterior of and and and denote the functions

and , respectively. This transmis-
sion problem describes the wave propagation from one medium
into another different medium, for instance, from air into glass,
and therefore it is of practical significance.
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Fig. 1. A transmission domain.

Fig. 2. A transmission domain.

In [7], Lions considered the problem of exact controllability
for (1.1)–(1.4) with a domain as shown in Fig. 2 and established
the results of exact controllability (see [7, p. 379, Th. 5.1] if

(1.5)

leaving the case where as an open problem (see [7, p.
394, Prob. 8.1]). Similar condition was also imposed by Nicaise
for an exact controllability problem (see [13, p. 1519, (H3)] and
[14, p. 587, Th. 2.2]) and by Lagnese for problems of transmis-
sion of a class of second-order hyperbolic systems (see [4, p.
345, (1.14)]). In addition, the author and Williams considered
the following problem of stabilization with a domain as shown
in Fig. 2

in (1.6)

on (1.7)

on (1.8)

on (1.9)

in (1.10)

and obtained the exponential stabilization under condition (1.5)
(see [11, Th. 1.1]), leaving the case where as an open
problem again, where is a positive constant. Therefore, the
case where has long become an interesting problem.

From the point of physical view, condition (1.5) is necessary
if the control is applied only on the exterior boundary. To see
this, we consider waves passing from a medium in which the
speed is into a medium in which the speed is greater than
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Fig. 3. Total internal reflection.

(see Fig. 3). If is the angle of incidence (i.e., the angle
) of a wave from and the angle of refraction (i.e.,

the angle ), then, by the law of refraction (see, e.g., [17, p.
596]), we have

(1.11)

Since , we can obtain the critical angle of incidence
given by

When the angle of incidence is greater than the critical angle
, the law of refraction (1.11) cannot be satisfied and there is

no refracted wave in the second medium. All the energy is
reflected. This phenomenon is calledtotal internal reflectionbe-
cause in optics the incident light is usually inside glass and re-
flected from the glass-air surface. This situation is illustrated in
Fig. 3. The wave from the point is totally reflected at the point

and then at the points , , , , and finally totally back
to the point . In this way, the wave will propagate forever and
never diminish. Therefore any control applied on the exterior
boundary of can do nothing on such a wave. Consequently,
in the case where , an additional control near the trans-
mission boundary might be needed for some domains such
as Fig. 3. However, if a domain is like the one as shown in
Fig. 4, the totally reflected waves will be absorbed or controlled
when they reached the exterior boundaryof and therefore
there is no need to introduce additional control near the trans-
mission boundary . For this reason, we shall consider only
the domains as shown in Fig. 3.

In the rest of the paper, we consider the problem of stabiliza-
tion for (1.1)–(1.4) in Section II. By introducing both boundary
feedback control and distributed feedback control near the
transmission boundary , we show that the controlled system
is exponentially stable without any restriction on and
and the transmission boundary . In Section III, we discuss
the problem of exact controllability and prove that problem
(1.1)–(1.4) is exactly controllable under the same assumptions.

We note that our paper has not solved an open problem
raised by Lions in [7, p. 394, Prob. 8.1] since we introduce the
additional distributed feedback control near the transmission
boundary and this makes the problem much simpler than
the original open problem in which only the boundary control is
allowed. However, the phenomenon of total internal reflection
shows that the original open problem for some domains such

Fig. 4. Total internal reflection.

Fig. 5. A transmission domain.

as Fig. 3 might have no solutions if the control is allowed only
on the exterior boundary.

II. STABILIZATION

Let be a bounded domain (open, nonempty, and connected)
in ( ) with a smooth boundary which consists
of two parts, and . is assumed to be either empty or
to have a nonempty interior and and relatively open in

. Let be a smooth hypersurface, which separatesinto
two domains and . Let be a domain near such that

. Assume

We denote

Such a domain is illustrated in Fig. 5.
In addition to boundary feedback control (1.8), we introduce

a localizedly distributed feedback control near the transmission
boundary as follows

in (2.1)

on (2.2)

on (2.3)

on (2.4)

in (2.5)
where and are positive constants and denotes the char-
acteristic function of in .

To state our results, we introduce notations used throughout
the paper. For a domain in , we denote by the usual
Sobolev space for any (see, e.g., [1]). If , we define

on and

(2.6)
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If , we define

on

and on (2.7)

As in [9], we can readily prove that there exists a positive con-
stant such that

(2.8)

Hence, the norm on

(2.9)

is equivalent to the usual one induced by
. As usual, we can easily show that system

(2.1)–(2.5) generates a strongly continuous semigroup on.
The energy of system (2.1)–(2.5) is defined by

(2.10)

We can readily verify that

(2.11)

Hence the energy decreases with time. Indeed, we have the fol-
lowing exponential stability theorem.

Theorem 2.1:Let denote the unit normal on and
pointing toward the exterior of and . Suppose that there
exists an such that

on (2.12)

where . Then there are positive constants
, such that

for (2.13)

for all solutions of (2.1)–(2.5) with .
Obviously, if the domain has only one hole, then the

boundary control can be supported only on the exterior part of
the boundary of by taking an inside the hole. However, if
the domain has more than one holes, except for one of them,
the boundary control has to be applied to the boundaries of all
other holes.

Remark 2.1: In Theorem 2.1, no geometric conditions are
imposed on . Such an improvement without geometric condi-
tions was due to Lasiecka and Triggiani [5] and here we simply
follow their idea and then nothing is new in this aspect. We
note that such an improvement is established at the cost that the
support of boundary control may contain points satisfying

and therefore bigger than the usual set

(2.14)

If we want to reduce the support to , we may lose
something again, that is, the solution of (2.1)–(2.5) may have

Fig. 6. Boundary partitions�(x ) and� (x ).

singularity at points since, in general,
, where (see Fig. 6).

For the discussion of such a case, we refer to [3].
Remark 2.2:Once we obtained the exponential stabilization,

the exact controllability for (1.1)–(1.4) can be readily estab-
lished by applying Russell’s “controllability via stabilizability”
principle (see, e.g., [15]) as we did in [11].

We now prove Theorem 2.1. The idea of the proof is simple.
It suffices to show that there exist positive constants and

such that (see, e.g., [2], [5], and [10])

(2.15)

However, the verification of this inequality is not easy. For this,
we employ the classical multiplier method originated by Lax,
Morawetz, Phillips, Ralston, and Strauss (see [6], [12], and
[16]).

Proof of Theorem 2.1:For , integrating (2.11) from
0 to , we obtain

(2.16)

If we can prove that there exist a sufficiently large and a
corresponding constant such that

(2.17)

then (2.15) can be established. Therefore, our proof is reduced
to prove (2.17).

For any , we denote

(2.18)

(2.19)

Since we assume that the unit normalon points toward the
exterior of , we have (see Fig. 5)

(2.20)

(2.21)

where means that the unit normalon points toward
the interior of .
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Let be a vector field of class
. Multiplying equation (2.1) by ( )

and integrating on by parts, we have

(2.22)

Multiplying (2.1) by ( ) and integrating on by
parts, we obtain

(2.23)

Summing (2.22) for with , using (2.20), (2.21) and (2.23)
and noting that on and on , we obtain

(2.24)

To estimate the right hand side of (2.24), only the transmission
term needs a special care and all other terms can be handled
in the usual way. However, for reader’s convenience, we give
detailed estimates for all terms. In what follows, thedenotes a
generic positive constant , independent of , which
may vary from line to line, while the denoting a generic
positive constant , dependent of .

• First Term. It follows from (2.8) and (2.11) that:

(2.25)
• Second Term. By Young’s inequality and the trace theorem

(see, e.g., [8, p. 39]), we obtain

(use (2.8))

(2.26)

• Third Term. By (2.8) and Young’s inequality it follows
that:

(2.27)

• Fifth Term. Let us choose the open subsets, and the
vector field to be such that

on and

(2.28)

Then near . It therefore follows from (2.22) that:

(2.29)
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where

Let be a smooth function such that

in and in (2.30)

and

(2.31)

Then near . For the existence of such a function,
we refer to [7, p. 414]. Multiplying (2.1) by and inte-
grating over by parts, we obtain

(2.32)

where

Hence, by (2.29), we deduce that

(2.33)

• Sixth Term. Since on , we deduce

(2.34)

• Seventh Term. To estimate the last term, we apply [5,
Lemma 7.2, p. 218]. This lemma can be stated as follows:
for arbitrarily small , there exists a positive
constant such that

(2.35)

where denotes the tangential derivative on (for
definition, see, e.g., [7, p. 137]). Although (2.35) was ob-
tained for a second-order hyperbolic equation with smooth
coefficients, it still holds for our transmission problem due
to the local property of (2.35). Indeed, when we do the
partition of unity for and flatten the boundary via a
change of variable, we obtain a second-order hyperbolic
equation with smooth coefficients in a half space of
since the coefficients near are constants. Moreover, the
proof of Lemma 7.2 of [5, p. 218] works for the transmis-
sion problem simply because the elliptic estimate in [5,
(7.10), p. 219] requires onlya priori regularity of solu-
tion and this is the regularity that the
solution of our transmission problem has.1 Noting that

(see, e.g., [7, p. 137]),
it therefore follows that:

(2.36)

It therefore follows from (2.24)–(2.27), (2.33), (2.34) and (2.36)
that:

(2.37)

Since by (2.11)

we obtain

(2.38)

1The author thanks Professor I. Lasiecka for pointing out this to him.
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and then

(2.39)

Using Lemma 2.1 below and by the usual compactness-unique-
ness argument (see, e.g., [5] and [7, App. 1]), we can readily
prove that

(2.40)

It therefore follows that:

(2.41)

which implies (2.17) for sufficiently large .
Lemma 2.1: If the solution of

in (2.42)

on (2.43)

on (2.44)

on (2.45)

in (2.46)

satisfies

on (2.47)

and

in (2.48)

for sufficiently large , then

in (2.49)

Proof: Set . It is clear that satisfies

in (2.50)

on (2.51)

on (2.52)

on (2.53)

Therefore, by [7, p. 92, Th. 8.2], we have

in (2.54)

It then follows that:

in (2.55)

on (2.56)

on (2.57)

on (2.58)

which implies (2.49).

III. EXACT CONTROLLABILITY

In this section, the domains, and are the same as in
Section II, but the partition of the boundaryof is different
and we partition it as follows (see Fig. 6):

(3.1)

(3.2)

where and . We denote

(3.3)

(3.4)

(3.5)

We introduce the function space

on

and on (3.6)

Let us consider the problem of exact controllability

in (3.7)

on (3.8)

on (3.9)

on (3.10)

in (3.11)

where and are controls to be found and denotes the
characteristic function of . We have the following exact con-
trollability theorem.

Theorem 3.1:Let and .
Then for any

the dual space of

there exist controls supported on and
; supported on

such that the solution of (3.7)–(3.11) satisfying

(3.12)

By the Hilbert uniqueness method (HUM) (see, e.g., [7]), it
is well known that the above exact controllability is equivalent
to the following observability.
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Theorem 3.2:Let and .
Then there exist a smooth function supported on
and a positive constant such that

(3.13)

for all solutions of (1.1)–(1.4).
Proof: Noting that on , we deduce from

(2.24) and (2.34) that

(3.14)

As usual (see, e.g., [7, p. 375, (4.25)]), we can estimate

(3.15)

Since , it therefore follows from (2.29) that:

(3.16)

where is the subdomain given in (2.28). We now estimate the
second term of the right-hand side. Letand be given in
(2.28) and be the smooth function given in (2.30). Multiplying
(1.1) by and integrating over , we obtain

(3.17)

and then

(3.18)

Taking in (3.18), we obtain

(3.19)

Similarly, by taking in (3.18), we deduce

(3.20)

It therefore follows from (3.16), (3.19), and (3.20) that:

(3.21)

On the other hand, let be a open set such that
and take

(3.22)
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where and is a nonnegative function
such that on and on . Set

(3.23)

Multiplying (1.1) by and integrating over ,
we obtain

(3.24)

It therefore follows that:

(3.25)

Hence, by (3.21) and (3.25), we deduce that

(3.26)

By taking a nonnegative function such that
on and on , we deduce (3.13).
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